Metamath Proof Explorer


Theorem leexp2d

Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses sqgt0d.1 φA
ltexp2d.2 φM
ltexp2d.3 φN
ltexp2d.4 φ1<A
Assertion leexp2d φMNAMAN

Proof

Step Hyp Ref Expression
1 sqgt0d.1 φA
2 ltexp2d.2 φM
3 ltexp2d.3 φN
4 ltexp2d.4 φ1<A
5 leexp2 AMN1<AMNAMAN
6 1 2 3 4 5 syl31anc φMNAMAN