Metamath Proof Explorer


Theorem expcand

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses sqgt0d.1 φA
ltexp2d.2 φM
ltexp2d.3 φN
ltexp2d.4 φ1<A
expcand.5 φAM=AN
Assertion expcand φM=N

Proof

Step Hyp Ref Expression
1 sqgt0d.1 φA
2 ltexp2d.2 φM
3 ltexp2d.3 φN
4 ltexp2d.4 φ1<A
5 expcand.5 φAM=AN
6 expcan AMN1<AAM=ANM=N
7 1 2 3 4 6 syl31anc φAM=ANM=N
8 5 7 mpbid φM=N