Metamath Proof Explorer


Theorem leexp2ad

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses sqgt0d.1 φA
leexp2ad.2 φ1A
leexp2ad.3 φNM
Assertion leexp2ad φAMAN

Proof

Step Hyp Ref Expression
1 sqgt0d.1 φA
2 leexp2ad.2 φ1A
3 leexp2ad.3 φNM
4 leexp2a A1ANMAMAN
5 1 2 3 4 syl3anc φAMAN