Metamath Proof Explorer


Theorem leexp2rd

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses sqgt0d.1 φA
leexp2rd.2 φM0
leexp2rd.3 φNM
leexp2rd.4 φ0A
leexp2rd.5 φA1
Assertion leexp2rd φANAM

Proof

Step Hyp Ref Expression
1 sqgt0d.1 φA
2 leexp2rd.2 φM0
3 leexp2rd.3 φNM
4 leexp2rd.4 φ0A
5 leexp2rd.5 φA1
6 leexp2r AM0NM0AA1ANAM
7 1 2 3 4 5 6 syl32anc φANAM