Metamath Proof Explorer


Theorem lincvalsn

Description: The linear combination over a singleton. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 25-May-2019)

Ref Expression
Hypotheses lincvalsn.b B = Base M
lincvalsn.s S = Scalar M
lincvalsn.r R = Base S
lincvalsn.t · ˙ = M
lincvalsn.f F = V Y
Assertion lincvalsn M LMod V B Y R F linC M V = Y · ˙ V

Proof

Step Hyp Ref Expression
1 lincvalsn.b B = Base M
2 lincvalsn.s S = Scalar M
3 lincvalsn.r R = Base S
4 lincvalsn.t · ˙ = M
5 lincvalsn.f F = V Y
6 5 oveq1i F linC M V = V Y linC M V
7 1 2 3 4 lincvalsng M LMod V B Y R V Y linC M V = Y · ˙ V
8 6 7 eqtrid M LMod V B Y R F linC M V = Y · ˙ V