Metamath Proof Explorer


Theorem lincvalsn

Description: The linear combination over a singleton. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 25-May-2019)

Ref Expression
Hypotheses lincvalsn.b 𝐵 = ( Base ‘ 𝑀 )
lincvalsn.s 𝑆 = ( Scalar ‘ 𝑀 )
lincvalsn.r 𝑅 = ( Base ‘ 𝑆 )
lincvalsn.t · = ( ·𝑠𝑀 )
lincvalsn.f 𝐹 = { ⟨ 𝑉 , 𝑌 ⟩ }
Assertion lincvalsn ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 𝑌 · 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lincvalsn.b 𝐵 = ( Base ‘ 𝑀 )
2 lincvalsn.s 𝑆 = ( Scalar ‘ 𝑀 )
3 lincvalsn.r 𝑅 = ( Base ‘ 𝑆 )
4 lincvalsn.t · = ( ·𝑠𝑀 )
5 lincvalsn.f 𝐹 = { ⟨ 𝑉 , 𝑌 ⟩ }
6 5 oveq1i ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( { ⟨ 𝑉 , 𝑌 ⟩ } ( linC ‘ 𝑀 ) { 𝑉 } )
7 1 2 3 4 lincvalsng ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅 ) → ( { ⟨ 𝑉 , 𝑌 ⟩ } ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 𝑌 · 𝑉 ) )
8 6 7 syl5eq ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 𝑌 · 𝑉 ) )