Metamath Proof Explorer


Theorem lincvalpr

Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019)

Ref Expression
Hypotheses lincvalsn.b 𝐵 = ( Base ‘ 𝑀 )
lincvalsn.s 𝑆 = ( Scalar ‘ 𝑀 )
lincvalsn.r 𝑅 = ( Base ‘ 𝑆 )
lincvalsn.t · = ( ·𝑠𝑀 )
lincvalpr.p + = ( +g𝑀 )
lincvalpr.f 𝐹 = { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ }
Assertion lincvalpr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( ( 𝑋 · 𝑉 ) + ( 𝑌 · 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 lincvalsn.b 𝐵 = ( Base ‘ 𝑀 )
2 lincvalsn.s 𝑆 = ( Scalar ‘ 𝑀 )
3 lincvalsn.r 𝑅 = ( Base ‘ 𝑆 )
4 lincvalsn.t · = ( ·𝑠𝑀 )
5 lincvalpr.p + = ( +g𝑀 )
6 lincvalpr.f 𝐹 = { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ }
7 simpl ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) → 𝑀 ∈ LMod )
8 7 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑀 ∈ LMod )
9 2 fveq2i ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
10 3 9 eqtri 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
11 10 eleq2i ( 𝑋𝑅𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
12 11 biimpi ( 𝑋𝑅𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
13 12 anim2i ( ( 𝑉𝐵𝑋𝑅 ) → ( 𝑉𝐵𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
14 13 3ad2ant2 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑉𝐵𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
15 10 eleq2i ( 𝑌𝑅𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
16 15 biimpi ( 𝑌𝑅𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
17 16 anim2i ( ( 𝑊𝐵𝑌𝑅 ) → ( 𝑊𝐵𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
18 17 3ad2ant3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑊𝐵𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
19 fvexd ( 𝑀 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V )
20 19 anim2i ( ( 𝑉𝑊𝑀 ∈ LMod ) → ( 𝑉𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) )
21 20 ancoms ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) → ( 𝑉𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) )
22 21 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑉𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) )
23 6 mapprop ( ( ( 𝑉𝐵𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ ( 𝑊𝐵𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ ( 𝑉𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) )
24 14 18 22 23 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) )
25 1 eleq2i ( 𝑉𝐵𝑉 ∈ ( Base ‘ 𝑀 ) )
26 25 biimpi ( 𝑉𝐵𝑉 ∈ ( Base ‘ 𝑀 ) )
27 26 adantr ( ( 𝑉𝐵𝑋𝑅 ) → 𝑉 ∈ ( Base ‘ 𝑀 ) )
28 1 eleq2i ( 𝑊𝐵𝑊 ∈ ( Base ‘ 𝑀 ) )
29 28 biimpi ( 𝑊𝐵𝑊 ∈ ( Base ‘ 𝑀 ) )
30 29 adantr ( ( 𝑊𝐵𝑌𝑅 ) → 𝑊 ∈ ( Base ‘ 𝑀 ) )
31 prelpwi ( ( 𝑉 ∈ ( Base ‘ 𝑀 ) ∧ 𝑊 ∈ ( Base ‘ 𝑀 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) )
32 27 30 31 syl2an ( ( ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) )
33 32 3adant1 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) )
34 lincval ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) ∧ { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
35 8 24 33 34 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
36 lmodcmn ( 𝑀 ∈ LMod → 𝑀 ∈ CMnd )
37 36 adantr ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) → 𝑀 ∈ CMnd )
38 37 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑀 ∈ CMnd )
39 simpr ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) → 𝑉𝑊 )
40 simpl ( ( 𝑉𝐵𝑋𝑅 ) → 𝑉𝐵 )
41 simpl ( ( 𝑊𝐵𝑌𝑅 ) → 𝑊𝐵 )
42 39 40 41 3anim123i ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑉𝑊𝑉𝐵𝑊𝐵 ) )
43 3anrot ( ( 𝑉𝑊𝑉𝐵𝑊𝐵 ) ↔ ( 𝑉𝐵𝑊𝐵𝑉𝑊 ) )
44 42 43 sylib ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑉𝐵𝑊𝐵𝑉𝑊 ) )
45 6 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → 𝐹 = { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } )
46 45 fveq1d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( 𝐹𝑉 ) = ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑉 ) )
47 simprl ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → 𝑉𝐵 )
48 simprr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → 𝑋𝑅 )
49 39 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → 𝑉𝑊 )
50 fvpr1g ( ( 𝑉𝐵𝑋𝑅𝑉𝑊 ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑉 ) = 𝑋 )
51 47 48 49 50 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑉 ) = 𝑋 )
52 46 51 eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( 𝐹𝑉 ) = 𝑋 )
53 52 oveq1d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) = ( 𝑋 ( ·𝑠𝑀 ) 𝑉 ) )
54 7 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → 𝑀 ∈ LMod )
55 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
56 1 2 55 3 lmodvscl ( ( 𝑀 ∈ LMod ∧ 𝑋𝑅𝑉𝐵 ) → ( 𝑋 ( ·𝑠𝑀 ) 𝑉 ) ∈ 𝐵 )
57 54 48 47 56 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( 𝑋 ( ·𝑠𝑀 ) 𝑉 ) ∈ 𝐵 )
58 53 57 eqeltrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ) → ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) ∈ 𝐵 )
59 58 3adant3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) ∈ 𝐵 )
60 6 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝐹 = { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } )
61 60 fveq1d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹𝑊 ) = ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑊 ) )
62 simprl ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑊𝐵 )
63 simprr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑌𝑅 )
64 39 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑉𝑊 )
65 fvpr2g ( ( 𝑊𝐵𝑌𝑅𝑉𝑊 ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑊 ) = 𝑌 )
66 62 63 64 65 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑊 ) = 𝑌 )
67 61 66 eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹𝑊 ) = 𝑌 )
68 67 oveq1d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) = ( 𝑌 ( ·𝑠𝑀 ) 𝑊 ) )
69 7 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑀 ∈ LMod )
70 1 2 55 3 lmodvscl ( ( 𝑀 ∈ LMod ∧ 𝑌𝑅𝑊𝐵 ) → ( 𝑌 ( ·𝑠𝑀 ) 𝑊 ) ∈ 𝐵 )
71 69 63 62 70 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑌 ( ·𝑠𝑀 ) 𝑊 ) ∈ 𝐵 )
72 68 71 eqeltrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ∈ 𝐵 )
73 72 3adant2 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ∈ 𝐵 )
74 fveq2 ( 𝑣 = 𝑉 → ( 𝐹𝑣 ) = ( 𝐹𝑉 ) )
75 id ( 𝑣 = 𝑉𝑣 = 𝑉 )
76 74 75 oveq12d ( 𝑣 = 𝑉 → ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) = ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) )
77 fveq2 ( 𝑣 = 𝑊 → ( 𝐹𝑣 ) = ( 𝐹𝑊 ) )
78 id ( 𝑣 = 𝑊𝑣 = 𝑊 )
79 77 78 oveq12d ( 𝑣 = 𝑊 → ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) = ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) )
80 1 5 76 79 gsumpr ( ( 𝑀 ∈ CMnd ∧ ( 𝑉𝐵𝑊𝐵𝑉𝑊 ) ∧ ( ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) ∈ 𝐵 ∧ ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ∈ 𝐵 ) ) → ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) = ( ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) + ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ) )
81 38 44 59 73 80 syl112anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) = ( ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) + ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ) )
82 4 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → · = ( ·𝑠𝑀 ) )
83 82 eqcomd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ·𝑠𝑀 ) = · )
84 6 fveq1i ( 𝐹𝑉 ) = ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑉 )
85 40 3ad2ant2 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑉𝐵 )
86 simpr ( ( 𝑉𝐵𝑋𝑅 ) → 𝑋𝑅 )
87 86 3ad2ant2 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑋𝑅 )
88 39 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑉𝑊 )
89 85 87 88 50 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑉 ) = 𝑋 )
90 84 89 syl5eq ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹𝑉 ) = 𝑋 )
91 eqidd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑉 = 𝑉 )
92 83 90 91 oveq123d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) = ( 𝑋 · 𝑉 ) )
93 6 fveq1i ( 𝐹𝑊 ) = ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑊 )
94 41 3ad2ant3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑊𝐵 )
95 simpr ( ( 𝑊𝐵𝑌𝑅 ) → 𝑌𝑅 )
96 95 3ad2ant3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑌𝑅 )
97 94 96 88 65 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( { ⟨ 𝑉 , 𝑋 ⟩ , ⟨ 𝑊 , 𝑌 ⟩ } ‘ 𝑊 ) = 𝑌 )
98 93 97 syl5eq ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹𝑊 ) = 𝑌 )
99 eqidd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → 𝑊 = 𝑊 )
100 83 98 99 oveq123d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) = ( 𝑌 · 𝑊 ) )
101 92 100 oveq12d ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( ( ( 𝐹𝑉 ) ( ·𝑠𝑀 ) 𝑉 ) + ( ( 𝐹𝑊 ) ( ·𝑠𝑀 ) 𝑊 ) ) = ( ( 𝑋 · 𝑉 ) + ( 𝑌 · 𝑊 ) ) )
102 35 81 101 3eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉𝑊 ) ∧ ( 𝑉𝐵𝑋𝑅 ) ∧ ( 𝑊𝐵𝑌𝑅 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( ( 𝑋 · 𝑉 ) + ( 𝑌 · 𝑊 ) ) )