Step |
Hyp |
Ref |
Expression |
1 |
|
lincvalsn.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincvalsn.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincvalsn.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
4 |
|
lincvalsn.t |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
5 |
|
lincvalpr.p |
⊢ + = ( +g ‘ 𝑀 ) |
6 |
|
lincvalpr.f |
⊢ 𝐹 = { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } |
7 |
|
simpl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) → 𝑀 ∈ LMod ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑀 ∈ LMod ) |
9 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
10 |
3 9
|
eqtri |
⊢ 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
11 |
10
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑅 ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
12 |
11
|
biimpi |
⊢ ( 𝑋 ∈ 𝑅 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
13 |
12
|
anim2i |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) → ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
15 |
10
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑅 ↔ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
16 |
15
|
biimpi |
⊢ ( 𝑌 ∈ 𝑅 → 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
17 |
16
|
anim2i |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) → ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
19 |
|
fvexd |
⊢ ( 𝑀 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) |
20 |
19
|
anim2i |
⊢ ( ( 𝑉 ≠ 𝑊 ∧ 𝑀 ∈ LMod ) → ( 𝑉 ≠ 𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) ) |
21 |
20
|
ancoms |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) → ( 𝑉 ≠ 𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑉 ≠ 𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) ) |
23 |
6
|
mapprop |
⊢ ( ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ ( 𝑉 ≠ 𝑊 ∧ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) ) |
24 |
14 18 22 23
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) ) |
25 |
1
|
eleq2i |
⊢ ( 𝑉 ∈ 𝐵 ↔ 𝑉 ∈ ( Base ‘ 𝑀 ) ) |
26 |
25
|
biimpi |
⊢ ( 𝑉 ∈ 𝐵 → 𝑉 ∈ ( Base ‘ 𝑀 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) → 𝑉 ∈ ( Base ‘ 𝑀 ) ) |
28 |
1
|
eleq2i |
⊢ ( 𝑊 ∈ 𝐵 ↔ 𝑊 ∈ ( Base ‘ 𝑀 ) ) |
29 |
28
|
biimpi |
⊢ ( 𝑊 ∈ 𝐵 → 𝑊 ∈ ( Base ‘ 𝑀 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) → 𝑊 ∈ ( Base ‘ 𝑀 ) ) |
31 |
|
prelpwi |
⊢ ( ( 𝑉 ∈ ( Base ‘ 𝑀 ) ∧ 𝑊 ∈ ( Base ‘ 𝑀 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
32 |
27 30 31
|
syl2an |
⊢ ( ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
33 |
32
|
3adant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
34 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑉 , 𝑊 } ) ∧ { 𝑉 , 𝑊 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
35 |
8 24 33 34
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
36 |
|
lmodcmn |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ CMnd ) |
37 |
36
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) → 𝑀 ∈ CMnd ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑀 ∈ CMnd ) |
39 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) → 𝑉 ≠ 𝑊 ) |
40 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) → 𝑉 ∈ 𝐵 ) |
41 |
|
simpl |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) → 𝑊 ∈ 𝐵 ) |
42 |
39 40 41
|
3anim123i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑉 ≠ 𝑊 ∧ 𝑉 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) |
43 |
|
3anrot |
⊢ ( ( 𝑉 ≠ 𝑊 ∧ 𝑉 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ↔ ( 𝑉 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ≠ 𝑊 ) ) |
44 |
42 43
|
sylib |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑉 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ≠ 𝑊 ) ) |
45 |
6
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → 𝐹 = { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ) |
46 |
45
|
fveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑉 ) = ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑉 ) ) |
47 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → 𝑉 ∈ 𝐵 ) |
48 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → 𝑋 ∈ 𝑅 ) |
49 |
39
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → 𝑉 ≠ 𝑊 ) |
50 |
|
fvpr1g |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ∧ 𝑉 ≠ 𝑊 ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑉 ) = 𝑋 ) |
51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑉 ) = 𝑋 ) |
52 |
46 51
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑉 ) = 𝑋 ) |
53 |
52
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) = ( 𝑋 ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ) |
54 |
7
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → 𝑀 ∈ LMod ) |
55 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
56 |
1 2 55 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑅 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ) |
57 |
54 48 47 56
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ) |
58 |
53 57
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ) |
59 |
58
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ) |
60 |
6
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝐹 = { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ) |
61 |
60
|
fveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑊 ) = ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑊 ) ) |
62 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑊 ∈ 𝐵 ) |
63 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑌 ∈ 𝑅 ) |
64 |
39
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑉 ≠ 𝑊 ) |
65 |
|
fvpr2g |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ∧ 𝑉 ≠ 𝑊 ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑊 ) = 𝑌 ) |
66 |
62 63 64 65
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑊 ) = 𝑌 ) |
67 |
61 66
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑌 ) |
68 |
67
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) = ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ) |
69 |
7
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑀 ∈ LMod ) |
70 |
1 2 55 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑌 ∈ 𝑅 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ∈ 𝐵 ) |
71 |
69 63 62 70
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ∈ 𝐵 ) |
72 |
68 71
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ∈ 𝐵 ) |
73 |
72
|
3adant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ∈ 𝐵 ) |
74 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑉 ) ) |
75 |
|
id |
⊢ ( 𝑣 = 𝑉 → 𝑣 = 𝑉 ) |
76 |
74 75
|
oveq12d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ) |
77 |
|
fveq2 |
⊢ ( 𝑣 = 𝑊 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑊 ) ) |
78 |
|
id |
⊢ ( 𝑣 = 𝑊 → 𝑣 = 𝑊 ) |
79 |
77 78
|
oveq12d |
⊢ ( 𝑣 = 𝑊 → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ) |
80 |
1 5 76 79
|
gsumpr |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ≠ 𝑊 ) ∧ ( ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ∈ 𝐵 ) ) → ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) = ( ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) + ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ) ) |
81 |
38 44 59 73 80
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝑀 Σg ( 𝑣 ∈ { 𝑉 , 𝑊 } ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) = ( ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) + ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ) ) |
82 |
4
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → · = ( ·𝑠 ‘ 𝑀 ) ) |
83 |
82
|
eqcomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ·𝑠 ‘ 𝑀 ) = · ) |
84 |
6
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑉 ) = ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑉 ) |
85 |
40
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑉 ∈ 𝐵 ) |
86 |
|
simpr |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) → 𝑋 ∈ 𝑅 ) |
87 |
86
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑋 ∈ 𝑅 ) |
88 |
39
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑉 ≠ 𝑊 ) |
89 |
85 87 88 50
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑉 ) = 𝑋 ) |
90 |
84 89
|
syl5eq |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑉 ) = 𝑋 ) |
91 |
|
eqidd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑉 = 𝑉 ) |
92 |
83 90 91
|
oveq123d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) = ( 𝑋 · 𝑉 ) ) |
93 |
6
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑊 ) = ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑊 ) |
94 |
41
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑊 ∈ 𝐵 ) |
95 |
|
simpr |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) → 𝑌 ∈ 𝑅 ) |
96 |
95
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑌 ∈ 𝑅 ) |
97 |
94 96 88 65
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( { 〈 𝑉 , 𝑋 〉 , 〈 𝑊 , 𝑌 〉 } ‘ 𝑊 ) = 𝑌 ) |
98 |
93 97
|
syl5eq |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑌 ) |
99 |
|
eqidd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → 𝑊 = 𝑊 ) |
100 |
83 98 99
|
oveq123d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) = ( 𝑌 · 𝑊 ) ) |
101 |
92 100
|
oveq12d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( ( 𝐹 ‘ 𝑉 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) + ( ( 𝐹 ‘ 𝑊 ) ( ·𝑠 ‘ 𝑀 ) 𝑊 ) ) = ( ( 𝑋 · 𝑉 ) + ( 𝑌 · 𝑊 ) ) ) |
102 |
35 81 101
|
3eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 , 𝑊 } ) = ( ( 𝑋 · 𝑉 ) + ( 𝑌 · 𝑊 ) ) ) |