Step |
Hyp |
Ref |
Expression |
1 |
|
lincop |
⊢ ( 𝑀 ∈ 𝑋 → ( linC ‘ 𝑀 ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( linC ‘ 𝑀 ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
3 |
2
|
oveqd |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) 𝑉 ) ) |
4 |
|
simp2 |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
5 |
|
simp3 |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
6 |
|
ovexd |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 ) |
8 |
|
fveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑣 = 𝑉 ) → ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
11 |
7 10
|
mpteq12dv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑣 = 𝑉 ) → ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑣 = 𝑉 ) → ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑣 = 𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
14 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
15 |
12 13 14
|
ovmpox2 |
⊢ ( ( 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ∈ V ) → ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) 𝑉 ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
16 |
4 5 6 15
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) 𝑉 ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
17 |
3 16
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |