Metamath Proof Explorer


Theorem lincval

Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion lincval ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 lincop ( 𝑀𝑋 → ( linC ‘ 𝑀 ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) )
2 1 3ad2ant1 ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( linC ‘ 𝑀 ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) )
3 2 oveqd ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) 𝑉 ) )
4 simp2 ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) )
5 simp3 ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
6 ovexd ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ∈ V )
7 simpr ( ( 𝑠 = 𝑆𝑣 = 𝑉 ) → 𝑣 = 𝑉 )
8 fveq1 ( 𝑠 = 𝑆 → ( 𝑠𝑥 ) = ( 𝑆𝑥 ) )
9 8 oveq1d ( 𝑠 = 𝑆 → ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) = ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) )
10 9 adantr ( ( 𝑠 = 𝑆𝑣 = 𝑉 ) → ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) = ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) )
11 7 10 mpteq12dv ( ( 𝑠 = 𝑆𝑣 = 𝑉 ) → ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) = ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) )
12 11 oveq2d ( ( 𝑠 = 𝑆𝑣 = 𝑉 ) → ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) = ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )
13 oveq2 ( 𝑣 = 𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) )
14 eqid ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )
15 12 13 14 ovmpox2 ( ( 𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ∈ V ) → ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) 𝑉 ) = ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )
16 4 5 6 15 syl3anc ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) ) 𝑉 ) = ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )
17 3 16 eqtrd ( ( 𝑀𝑋𝑆 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑥𝑉 ↦ ( ( 𝑆𝑥 ) ( ·𝑠𝑀 ) 𝑥 ) ) ) )