| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincop |
|- ( M e. X -> ( linC ` M ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( linC ` M ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) ) |
| 3 |
2
|
oveqd |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( linC ` M ) V ) = ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) ) |
| 4 |
|
simp2 |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
| 5 |
|
simp3 |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> V e. ~P ( Base ` M ) ) |
| 6 |
|
ovexd |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) e. _V ) |
| 7 |
|
simpr |
|- ( ( s = S /\ v = V ) -> v = V ) |
| 8 |
|
fveq1 |
|- ( s = S -> ( s ` x ) = ( S ` x ) ) |
| 9 |
8
|
oveq1d |
|- ( s = S -> ( ( s ` x ) ( .s ` M ) x ) = ( ( S ` x ) ( .s ` M ) x ) ) |
| 10 |
9
|
adantr |
|- ( ( s = S /\ v = V ) -> ( ( s ` x ) ( .s ` M ) x ) = ( ( S ` x ) ( .s ` M ) x ) ) |
| 11 |
7 10
|
mpteq12dv |
|- ( ( s = S /\ v = V ) -> ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) = ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) |
| 12 |
11
|
oveq2d |
|- ( ( s = S /\ v = V ) -> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) ) |
| 13 |
|
oveq2 |
|- ( v = V -> ( ( Base ` ( Scalar ` M ) ) ^m v ) = ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
| 14 |
|
eqid |
|- ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) |
| 15 |
12 13 14
|
ovmpox2 |
|- ( ( S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) /\ ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) e. _V ) -> ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) ) |
| 16 |
4 5 6 15
|
syl3anc |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) ) |
| 17 |
3 16
|
eqtrd |
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( linC ` M ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) ) |