Metamath Proof Explorer


Theorem lincval

Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion lincval
|- ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( linC ` M ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) )

Proof

Step Hyp Ref Expression
1 lincop
 |-  ( M e. X -> ( linC ` M ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) )
2 1 3ad2ant1
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( linC ` M ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) )
3 2 oveqd
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( linC ` M ) V ) = ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) )
4 simp2
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) )
5 simp3
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> V e. ~P ( Base ` M ) )
6 ovexd
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) e. _V )
7 simpr
 |-  ( ( s = S /\ v = V ) -> v = V )
8 fveq1
 |-  ( s = S -> ( s ` x ) = ( S ` x ) )
9 8 oveq1d
 |-  ( s = S -> ( ( s ` x ) ( .s ` M ) x ) = ( ( S ` x ) ( .s ` M ) x ) )
10 9 adantr
 |-  ( ( s = S /\ v = V ) -> ( ( s ` x ) ( .s ` M ) x ) = ( ( S ` x ) ( .s ` M ) x ) )
11 7 10 mpteq12dv
 |-  ( ( s = S /\ v = V ) -> ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) = ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) )
12 11 oveq2d
 |-  ( ( s = S /\ v = V ) -> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) )
13 oveq2
 |-  ( v = V -> ( ( Base ` ( Scalar ` M ) ) ^m v ) = ( ( Base ` ( Scalar ` M ) ) ^m V ) )
14 eqid
 |-  ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) )
15 12 13 14 ovmpox2
 |-  ( ( S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) /\ ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) e. _V ) -> ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) )
16 4 5 6 15 syl3anc
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) )
17 3 16 eqtrd
 |-  ( ( M e. X /\ S e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( S ( linC ` M ) V ) = ( M gsum ( x e. V |-> ( ( S ` x ) ( .s ` M ) x ) ) ) )