Step |
Hyp |
Ref |
Expression |
1 |
|
df-linc |
|- linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) ) |
2 |
|
2fveq3 |
|- ( m = M -> ( Base ` ( Scalar ` m ) ) = ( Base ` ( Scalar ` M ) ) ) |
3 |
2
|
oveq1d |
|- ( m = M -> ( ( Base ` ( Scalar ` m ) ) ^m v ) = ( ( Base ` ( Scalar ` M ) ) ^m v ) ) |
4 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
5 |
4
|
pweqd |
|- ( m = M -> ~P ( Base ` m ) = ~P ( Base ` M ) ) |
6 |
|
id |
|- ( m = M -> m = M ) |
7 |
|
fveq2 |
|- ( m = M -> ( .s ` m ) = ( .s ` M ) ) |
8 |
7
|
oveqd |
|- ( m = M -> ( ( s ` x ) ( .s ` m ) x ) = ( ( s ` x ) ( .s ` M ) x ) ) |
9 |
8
|
mpteq2dv |
|- ( m = M -> ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) = ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) |
10 |
6 9
|
oveq12d |
|- ( m = M -> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) = ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) |
11 |
3 5 10
|
mpoeq123dv |
|- ( m = M -> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) ) |
12 |
|
elex |
|- ( M e. X -> M e. _V ) |
13 |
|
fvex |
|- ( Base ` M ) e. _V |
14 |
13
|
pwex |
|- ~P ( Base ` M ) e. _V |
15 |
|
ovexd |
|- ( M e. X -> ( ( Base ` ( Scalar ` M ) ) ^m v ) e. _V ) |
16 |
15
|
ralrimivw |
|- ( M e. X -> A. v e. ~P ( Base ` M ) ( ( Base ` ( Scalar ` M ) ) ^m v ) e. _V ) |
17 |
|
eqid |
|- ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) |
18 |
17
|
mpoexxg2 |
|- ( ( ~P ( Base ` M ) e. _V /\ A. v e. ~P ( Base ` M ) ( ( Base ` ( Scalar ` M ) ) ^m v ) e. _V ) -> ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) e. _V ) |
19 |
14 16 18
|
sylancr |
|- ( M e. X -> ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) e. _V ) |
20 |
1 11 12 19
|
fvmptd3 |
|- ( M e. X -> ( linC ` M ) = ( s e. ( ( Base ` ( Scalar ` M ) ) ^m v ) , v e. ~P ( Base ` M ) |-> ( M gsum ( x e. v |-> ( ( s ` x ) ( .s ` M ) x ) ) ) ) ) |