Step |
Hyp |
Ref |
Expression |
1 |
|
df-linc |
⊢ linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) ) |
2 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
5 |
4
|
pweqd |
⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
6 |
|
id |
⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) |
7 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ·𝑠 ‘ 𝑚 ) = ( ·𝑠 ‘ 𝑀 ) ) |
8 |
7
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) = ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) |
10 |
6 9
|
oveq12d |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
11 |
3 5 10
|
mpoeq123dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
12 |
|
elex |
⊢ ( 𝑀 ∈ 𝑋 → 𝑀 ∈ V ) |
13 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
14 |
13
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑀 ) ∈ V |
15 |
|
ovexd |
⊢ ( 𝑀 ∈ 𝑋 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) ∈ V ) |
16 |
15
|
ralrimivw |
⊢ ( 𝑀 ∈ 𝑋 → ∀ 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) ∈ V ) |
17 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
18 |
17
|
mpoexxg2 |
⊢ ( ( 𝒫 ( Base ‘ 𝑀 ) ∈ V ∧ ∀ 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) ∈ V ) → ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ∈ V ) |
19 |
14 16 18
|
sylancr |
⊢ ( 𝑀 ∈ 𝑋 → ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ∈ V ) |
20 |
1 11 12 19
|
fvmptd3 |
⊢ ( 𝑀 ∈ 𝑋 → ( linC ‘ 𝑀 ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑀 ) ↦ ( 𝑀 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) ) |