Metamath Proof Explorer


Theorem lincop

Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion lincop MXlinCM=sBaseScalarMv,v𝒫BaseMMxvsxMx

Proof

Step Hyp Ref Expression
1 df-linc linC=mVsBaseScalarmv,v𝒫Basemmxvsxmx
2 2fveq3 m=MBaseScalarm=BaseScalarM
3 2 oveq1d m=MBaseScalarmv=BaseScalarMv
4 fveq2 m=MBasem=BaseM
5 4 pweqd m=M𝒫Basem=𝒫BaseM
6 id m=Mm=M
7 fveq2 m=Mm=M
8 7 oveqd m=Msxmx=sxMx
9 8 mpteq2dv m=Mxvsxmx=xvsxMx
10 6 9 oveq12d m=Mmxvsxmx=MxvsxMx
11 3 5 10 mpoeq123dv m=MsBaseScalarmv,v𝒫Basemmxvsxmx=sBaseScalarMv,v𝒫BaseMMxvsxMx
12 elex MXMV
13 fvex BaseMV
14 13 pwex 𝒫BaseMV
15 ovexd MXBaseScalarMvV
16 15 ralrimivw MXv𝒫BaseMBaseScalarMvV
17 eqid sBaseScalarMv,v𝒫BaseMMxvsxMx=sBaseScalarMv,v𝒫BaseMMxvsxMx
18 17 mpoexxg2 𝒫BaseMVv𝒫BaseMBaseScalarMvVsBaseScalarMv,v𝒫BaseMMxvsxMxV
19 14 16 18 sylancr MXsBaseScalarMv,v𝒫BaseMMxvsxMxV
20 1 11 12 19 fvmptd3 MXlinCM=sBaseScalarMv,v𝒫BaseMMxvsxMx