Metamath Proof Explorer


Theorem lincop

Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion lincop M X linC M = s Base Scalar M v , v 𝒫 Base M M x v s x M x

Proof

Step Hyp Ref Expression
1 df-linc linC = m V s Base Scalar m v , v 𝒫 Base m m x v s x m x
2 2fveq3 m = M Base Scalar m = Base Scalar M
3 2 oveq1d m = M Base Scalar m v = Base Scalar M v
4 fveq2 m = M Base m = Base M
5 4 pweqd m = M 𝒫 Base m = 𝒫 Base M
6 id m = M m = M
7 fveq2 m = M m = M
8 7 oveqd m = M s x m x = s x M x
9 8 mpteq2dv m = M x v s x m x = x v s x M x
10 6 9 oveq12d m = M m x v s x m x = M x v s x M x
11 3 5 10 mpoeq123dv m = M s Base Scalar m v , v 𝒫 Base m m x v s x m x = s Base Scalar M v , v 𝒫 Base M M x v s x M x
12 elex M X M V
13 fvex Base M V
14 13 pwex 𝒫 Base M V
15 ovexd M X Base Scalar M v V
16 15 ralrimivw M X v 𝒫 Base M Base Scalar M v V
17 eqid s Base Scalar M v , v 𝒫 Base M M x v s x M x = s Base Scalar M v , v 𝒫 Base M M x v s x M x
18 17 mpoexxg2 𝒫 Base M V v 𝒫 Base M Base Scalar M v V s Base Scalar M v , v 𝒫 Base M M x v s x M x V
19 14 16 18 sylancr M X s Base Scalar M v , v 𝒫 Base M M x v s x M x V
20 1 11 12 19 fvmptd3 M X linC M = s Base Scalar M v , v 𝒫 Base M M x v s x M x