Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Linear algebra (extension)
Linear combinations
lincval
Next ⟩
dflinc2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lincval
Description:
The value of a linear combination.
(Contributed by
AV
, 30-Mar-2019)
Ref
Expression
Assertion
lincval
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
S
linC
⁡
M
V
=
∑
M
x
∈
V
S
⁡
x
⋅
M
x
Proof
Step
Hyp
Ref
Expression
1
lincop
⊢
M
∈
X
→
linC
⁡
M
=
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
2
1
3ad2ant1
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
linC
⁡
M
=
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
3
2
oveqd
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
S
linC
⁡
M
V
=
S
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
V
4
simp2
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
S
∈
Base
Scalar
⁡
M
V
5
simp3
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
V
∈
𝒫
Base
M
6
ovexd
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
∑
M
x
∈
V
S
⁡
x
⋅
M
x
∈
V
7
simpr
⊢
s
=
S
∧
v
=
V
→
v
=
V
8
fveq1
⊢
s
=
S
→
s
⁡
x
=
S
⁡
x
9
8
oveq1d
⊢
s
=
S
→
s
⁡
x
⋅
M
x
=
S
⁡
x
⋅
M
x
10
9
adantr
⊢
s
=
S
∧
v
=
V
→
s
⁡
x
⋅
M
x
=
S
⁡
x
⋅
M
x
11
7
10
mpteq12dv
⊢
s
=
S
∧
v
=
V
→
x
∈
v
⟼
s
⁡
x
⋅
M
x
=
x
∈
V
⟼
S
⁡
x
⋅
M
x
12
11
oveq2d
⊢
s
=
S
∧
v
=
V
→
∑
M
x
∈
v
s
⁡
x
⋅
M
x
=
∑
M
x
∈
V
S
⁡
x
⋅
M
x
13
oveq2
⊢
v
=
V
→
Base
Scalar
⁡
M
v
=
Base
Scalar
⁡
M
V
14
eqid
⊢
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
=
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
15
12
13
14
ovmpox2
⊢
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
∧
∑
M
x
∈
V
S
⁡
x
⋅
M
x
∈
V
→
S
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
V
=
∑
M
x
∈
V
S
⁡
x
⋅
M
x
16
4
5
6
15
syl3anc
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
S
s
∈
Base
Scalar
⁡
M
v
,
v
∈
𝒫
Base
M
⟼
∑
M
x
∈
v
s
⁡
x
⋅
M
x
V
=
∑
M
x
∈
V
S
⁡
x
⋅
M
x
17
3
16
eqtrd
⊢
M
∈
X
∧
S
∈
Base
Scalar
⁡
M
V
∧
V
∈
𝒫
Base
M
→
S
linC
⁡
M
V
=
∑
M
x
∈
V
S
⁡
x
⋅
M
x