Metamath Proof Explorer


Theorem lincval

Description: The value of a linear combination. (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion lincval M X S Base Scalar M V V 𝒫 Base M S linC M V = M x V S x M x

Proof

Step Hyp Ref Expression
1 lincop M X linC M = s Base Scalar M v , v 𝒫 Base M M x v s x M x
2 1 3ad2ant1 M X S Base Scalar M V V 𝒫 Base M linC M = s Base Scalar M v , v 𝒫 Base M M x v s x M x
3 2 oveqd M X S Base Scalar M V V 𝒫 Base M S linC M V = S s Base Scalar M v , v 𝒫 Base M M x v s x M x V
4 simp2 M X S Base Scalar M V V 𝒫 Base M S Base Scalar M V
5 simp3 M X S Base Scalar M V V 𝒫 Base M V 𝒫 Base M
6 ovexd M X S Base Scalar M V V 𝒫 Base M M x V S x M x V
7 simpr s = S v = V v = V
8 fveq1 s = S s x = S x
9 8 oveq1d s = S s x M x = S x M x
10 9 adantr s = S v = V s x M x = S x M x
11 7 10 mpteq12dv s = S v = V x v s x M x = x V S x M x
12 11 oveq2d s = S v = V M x v s x M x = M x V S x M x
13 oveq2 v = V Base Scalar M v = Base Scalar M V
14 eqid s Base Scalar M v , v 𝒫 Base M M x v s x M x = s Base Scalar M v , v 𝒫 Base M M x v s x M x
15 12 13 14 ovmpox2 S Base Scalar M V V 𝒫 Base M M x V S x M x V S s Base Scalar M v , v 𝒫 Base M M x v s x M x V = M x V S x M x
16 4 5 6 15 syl3anc M X S Base Scalar M V V 𝒫 Base M S s Base Scalar M v , v 𝒫 Base M M x v s x M x V = M x V S x M x
17 3 16 eqtrd M X S Base Scalar M V V 𝒫 Base M S linC M V = M x V S x M x