Metamath Proof Explorer


Theorem dflinc2

Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019)

Ref Expression
Assertion dflinc2 linC=mVsBaseScalarmv,v𝒫BasemmsmfIv

Proof

Step Hyp Ref Expression
1 df-linc linC=mVsBaseScalarmv,v𝒫Basemmivsimi
2 elmapfn sBaseScalarmvsFnv
3 2 adantr sBaseScalarmvv𝒫BasemsFnv
4 fnresi IvFnv
5 4 a1i sBaseScalarmvv𝒫BasemIvFnv
6 vex vV
7 6 a1i sBaseScalarmvv𝒫BasemvV
8 inidm vv=v
9 eqidd sBaseScalarmvv𝒫Basemivsi=si
10 fvresi ivIvi=i
11 10 adantl sBaseScalarmvv𝒫BasemivIvi=i
12 3 5 7 7 8 9 11 offval sBaseScalarmvv𝒫BasemsmfIv=ivsimi
13 12 eqcomd sBaseScalarmvv𝒫Basemivsimi=smfIv
14 13 oveq2d sBaseScalarmvv𝒫Basemmivsimi=msmfIv
15 14 mpoeq3ia sBaseScalarmv,v𝒫Basemmivsimi=sBaseScalarmv,v𝒫BasemmsmfIv
16 15 mpteq2i mVsBaseScalarmv,v𝒫Basemmivsimi=mVsBaseScalarmv,v𝒫BasemmsmfIv
17 1 16 eqtri linC=mVsBaseScalarmv,v𝒫BasemmsmfIv