Step |
Hyp |
Ref |
Expression |
1 |
|
df-linc |
⊢ linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) ) ) ) |
2 |
|
elmapfn |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) → 𝑠 Fn 𝑣 ) |
3 |
2
|
adantr |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → 𝑠 Fn 𝑣 ) |
4 |
|
fnresi |
⊢ ( I ↾ 𝑣 ) Fn 𝑣 |
5 |
4
|
a1i |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → ( I ↾ 𝑣 ) Fn 𝑣 ) |
6 |
|
vex |
⊢ 𝑣 ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → 𝑣 ∈ V ) |
8 |
|
inidm |
⊢ ( 𝑣 ∩ 𝑣 ) = 𝑣 |
9 |
|
eqidd |
⊢ ( ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) ∧ 𝑖 ∈ 𝑣 ) → ( 𝑠 ‘ 𝑖 ) = ( 𝑠 ‘ 𝑖 ) ) |
10 |
|
fvresi |
⊢ ( 𝑖 ∈ 𝑣 → ( ( I ↾ 𝑣 ) ‘ 𝑖 ) = 𝑖 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) ∧ 𝑖 ∈ 𝑣 ) → ( ( I ↾ 𝑣 ) ‘ 𝑖 ) = 𝑖 ) |
12 |
3 5 7 7 8 9 11
|
offval |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) = ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) = ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ∧ 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ) → ( 𝑚 Σg ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) ) = ( 𝑚 Σg ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) ) ) |
15 |
14
|
mpoeq3ia |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) ) ) = ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) ) ) |
16 |
15
|
mpteq2i |
⊢ ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑖 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑚 ) 𝑖 ) ) ) ) ) = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) ) ) ) |
17 |
1 16
|
eqtri |
⊢ linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑠 ∘f ( ·𝑠 ‘ 𝑚 ) ( I ↾ 𝑣 ) ) ) ) ) |