| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-linc | ⊢  linC   =  ( 𝑚  ∈  V  ↦  ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) ) ) ) ) | 
						
							| 2 |  | elmapfn | ⊢ ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  →  𝑠  Fn  𝑣 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  𝑠  Fn  𝑣 ) | 
						
							| 4 |  | fnresi | ⊢ (  I   ↾  𝑣 )  Fn  𝑣 | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  (  I   ↾  𝑣 )  Fn  𝑣 ) | 
						
							| 6 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  𝑣  ∈  V ) | 
						
							| 8 |  | inidm | ⊢ ( 𝑣  ∩  𝑣 )  =  𝑣 | 
						
							| 9 |  | eqidd | ⊢ ( ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  ∧  𝑖  ∈  𝑣 )  →  ( 𝑠 ‘ 𝑖 )  =  ( 𝑠 ‘ 𝑖 ) ) | 
						
							| 10 |  | fvresi | ⊢ ( 𝑖  ∈  𝑣  →  ( (  I   ↾  𝑣 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  ∧  𝑖  ∈  𝑣 )  →  ( (  I   ↾  𝑣 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 12 | 3 5 7 7 8 9 11 | offval | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) )  =  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) )  =  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 )  ∧  𝑣  ∈  𝒫  ( Base ‘ 𝑚 ) )  →  ( 𝑚  Σg  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) ) )  =  ( 𝑚  Σg  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) ) ) ) | 
						
							| 15 | 14 | mpoeq3ia | ⊢ ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) ) ) )  =  ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) ) ) ) | 
						
							| 16 | 15 | mpteq2i | ⊢ ( 𝑚  ∈  V  ↦  ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑖  ∈  𝑣  ↦  ( ( 𝑠 ‘ 𝑖 ) (  ·𝑠  ‘ 𝑚 ) 𝑖 ) ) ) ) )  =  ( 𝑚  ∈  V  ↦  ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) ) ) ) ) | 
						
							| 17 | 1 16 | eqtri | ⊢  linC   =  ( 𝑚  ∈  V  ↦  ( 𝑠  ∈  ( ( Base ‘ ( Scalar ‘ 𝑚 ) )  ↑m  𝑣 ) ,  𝑣  ∈  𝒫  ( Base ‘ 𝑚 )  ↦  ( 𝑚  Σg  ( 𝑠  ∘f  (  ·𝑠  ‘ 𝑚 ) (  I   ↾  𝑣 ) ) ) ) ) |