| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcoop.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lcoop.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lcoop.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 4 |
|
elex |
⊢ ( 𝑀 ∈ 𝑋 → 𝑀 ∈ V ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑀 ∈ V ) |
| 6 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
| 7 |
6
|
eleq2i |
⊢ ( 𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 8 |
7
|
biimpi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 10 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 11 |
|
rabexg |
⊢ ( 𝐵 ∈ V → { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ∈ V ) |
| 12 |
10 11
|
mp1i |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ∈ V ) |
| 13 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
| 14 |
13 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 16 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 18 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 19 |
3 18
|
eqtri |
⊢ 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 20 |
17 19
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = 𝑅 ) |
| 21 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 ) |
| 22 |
20 21
|
oveq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) = ( 𝑅 ↑m 𝑉 ) ) |
| 23 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 24 |
2
|
a1i |
⊢ ( 𝑚 = 𝑀 → 𝑆 = ( Scalar ‘ 𝑀 ) ) |
| 25 |
24
|
eqcomd |
⊢ ( 𝑚 = 𝑀 → ( Scalar ‘ 𝑀 ) = 𝑆 ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ 𝑆 ) ) |
| 27 |
23 26
|
eqtrd |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = ( 0g ‘ 𝑆 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = ( 0g ‘ 𝑆 ) ) |
| 29 |
28
|
breq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ↔ 𝑠 finSupp ( 0g ‘ 𝑆 ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( linC ‘ 𝑚 ) = ( linC ‘ 𝑀 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( linC ‘ 𝑚 ) = ( linC ‘ 𝑀 ) ) |
| 32 |
|
eqidd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → 𝑠 = 𝑠 ) |
| 33 |
31 32 21
|
oveq123d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ↔ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 35 |
29 34
|
anbi12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) ↔ ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 36 |
22 35
|
rexeqbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → ( ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) ↔ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 37 |
15 36
|
rabeqbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = 𝑉 ) → { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) |
| 38 |
13
|
pweqd |
⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
| 39 |
|
df-lco |
⊢ LinCo = ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } ) |
| 40 |
37 38 39
|
ovmpox |
⊢ ( ( 𝑀 ∈ V ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ∈ V ) → ( 𝑀 LinCo 𝑉 ) = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) |
| 41 |
5 9 12 40
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) |