Step |
Hyp |
Ref |
Expression |
1 |
|
lcoop.b |
|- B = ( Base ` M ) |
2 |
|
lcoop.s |
|- S = ( Scalar ` M ) |
3 |
|
lcoop.r |
|- R = ( Base ` S ) |
4 |
|
elex |
|- ( M e. X -> M e. _V ) |
5 |
4
|
adantr |
|- ( ( M e. X /\ V e. ~P B ) -> M e. _V ) |
6 |
1
|
pweqi |
|- ~P B = ~P ( Base ` M ) |
7 |
6
|
eleq2i |
|- ( V e. ~P B <-> V e. ~P ( Base ` M ) ) |
8 |
7
|
biimpi |
|- ( V e. ~P B -> V e. ~P ( Base ` M ) ) |
9 |
8
|
adantl |
|- ( ( M e. X /\ V e. ~P B ) -> V e. ~P ( Base ` M ) ) |
10 |
1
|
fvexi |
|- B e. _V |
11 |
|
rabexg |
|- ( B e. _V -> { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } e. _V ) |
12 |
10 11
|
mp1i |
|- ( ( M e. X /\ V e. ~P B ) -> { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } e. _V ) |
13 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
14 |
13 1
|
eqtr4di |
|- ( m = M -> ( Base ` m ) = B ) |
15 |
14
|
adantr |
|- ( ( m = M /\ v = V ) -> ( Base ` m ) = B ) |
16 |
|
2fveq3 |
|- ( m = M -> ( Base ` ( Scalar ` m ) ) = ( Base ` ( Scalar ` M ) ) ) |
17 |
16
|
adantr |
|- ( ( m = M /\ v = V ) -> ( Base ` ( Scalar ` m ) ) = ( Base ` ( Scalar ` M ) ) ) |
18 |
2
|
fveq2i |
|- ( Base ` S ) = ( Base ` ( Scalar ` M ) ) |
19 |
3 18
|
eqtri |
|- R = ( Base ` ( Scalar ` M ) ) |
20 |
17 19
|
eqtr4di |
|- ( ( m = M /\ v = V ) -> ( Base ` ( Scalar ` m ) ) = R ) |
21 |
|
simpr |
|- ( ( m = M /\ v = V ) -> v = V ) |
22 |
20 21
|
oveq12d |
|- ( ( m = M /\ v = V ) -> ( ( Base ` ( Scalar ` m ) ) ^m v ) = ( R ^m V ) ) |
23 |
|
2fveq3 |
|- ( m = M -> ( 0g ` ( Scalar ` m ) ) = ( 0g ` ( Scalar ` M ) ) ) |
24 |
2
|
a1i |
|- ( m = M -> S = ( Scalar ` M ) ) |
25 |
24
|
eqcomd |
|- ( m = M -> ( Scalar ` M ) = S ) |
26 |
25
|
fveq2d |
|- ( m = M -> ( 0g ` ( Scalar ` M ) ) = ( 0g ` S ) ) |
27 |
23 26
|
eqtrd |
|- ( m = M -> ( 0g ` ( Scalar ` m ) ) = ( 0g ` S ) ) |
28 |
27
|
adantr |
|- ( ( m = M /\ v = V ) -> ( 0g ` ( Scalar ` m ) ) = ( 0g ` S ) ) |
29 |
28
|
breq2d |
|- ( ( m = M /\ v = V ) -> ( s finSupp ( 0g ` ( Scalar ` m ) ) <-> s finSupp ( 0g ` S ) ) ) |
30 |
|
fveq2 |
|- ( m = M -> ( linC ` m ) = ( linC ` M ) ) |
31 |
30
|
adantr |
|- ( ( m = M /\ v = V ) -> ( linC ` m ) = ( linC ` M ) ) |
32 |
|
eqidd |
|- ( ( m = M /\ v = V ) -> s = s ) |
33 |
31 32 21
|
oveq123d |
|- ( ( m = M /\ v = V ) -> ( s ( linC ` m ) v ) = ( s ( linC ` M ) V ) ) |
34 |
33
|
eqeq2d |
|- ( ( m = M /\ v = V ) -> ( c = ( s ( linC ` m ) v ) <-> c = ( s ( linC ` M ) V ) ) ) |
35 |
29 34
|
anbi12d |
|- ( ( m = M /\ v = V ) -> ( ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) <-> ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) ) ) |
36 |
22 35
|
rexeqbidv |
|- ( ( m = M /\ v = V ) -> ( E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) <-> E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) ) ) |
37 |
15 36
|
rabeqbidv |
|- ( ( m = M /\ v = V ) -> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } = { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } ) |
38 |
13
|
pweqd |
|- ( m = M -> ~P ( Base ` m ) = ~P ( Base ` M ) ) |
39 |
|
df-lco |
|- LinCo = ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } ) |
40 |
37 38 39
|
ovmpox |
|- ( ( M e. _V /\ V e. ~P ( Base ` M ) /\ { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } e. _V ) -> ( M LinCo V ) = { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } ) |
41 |
5 9 12 40
|
syl3anc |
|- ( ( M e. X /\ V e. ~P B ) -> ( M LinCo V ) = { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } ) |