Metamath Proof Explorer


Theorem lcoval

Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b
|- B = ( Base ` M )
lcoop.s
|- S = ( Scalar ` M )
lcoop.r
|- R = ( Base ` S )
Assertion lcoval
|- ( ( M e. X /\ V e. ~P B ) -> ( C e. ( M LinCo V ) <-> ( C e. B /\ E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ C = ( s ( linC ` M ) V ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lcoop.b
 |-  B = ( Base ` M )
2 lcoop.s
 |-  S = ( Scalar ` M )
3 lcoop.r
 |-  R = ( Base ` S )
4 1 2 3 lcoop
 |-  ( ( M e. X /\ V e. ~P B ) -> ( M LinCo V ) = { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } )
5 4 eleq2d
 |-  ( ( M e. X /\ V e. ~P B ) -> ( C e. ( M LinCo V ) <-> C e. { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } ) )
6 eqeq1
 |-  ( c = C -> ( c = ( s ( linC ` M ) V ) <-> C = ( s ( linC ` M ) V ) ) )
7 6 anbi2d
 |-  ( c = C -> ( ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) <-> ( s finSupp ( 0g ` S ) /\ C = ( s ( linC ` M ) V ) ) ) )
8 7 rexbidv
 |-  ( c = C -> ( E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) <-> E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ C = ( s ( linC ` M ) V ) ) ) )
9 8 elrab
 |-  ( C e. { c e. B | E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ c = ( s ( linC ` M ) V ) ) } <-> ( C e. B /\ E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ C = ( s ( linC ` M ) V ) ) ) )
10 5 9 bitrdi
 |-  ( ( M e. X /\ V e. ~P B ) -> ( C e. ( M LinCo V ) <-> ( C e. B /\ E. s e. ( R ^m V ) ( s finSupp ( 0g ` S ) /\ C = ( s ( linC ` M ) V ) ) ) ) )