Metamath Proof Explorer


Theorem lcoval

Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b 𝐵 = ( Base ‘ 𝑀 )
lcoop.s 𝑆 = ( Scalar ‘ 𝑀 )
lcoop.r 𝑅 = ( Base ‘ 𝑆 )
Assertion lcoval ( ( 𝑀𝑋𝑉 ∈ 𝒫 𝐵 ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝐶𝐵 ∧ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lcoop.b 𝐵 = ( Base ‘ 𝑀 )
2 lcoop.s 𝑆 = ( Scalar ‘ 𝑀 )
3 lcoop.r 𝑅 = ( Base ‘ 𝑆 )
4 1 2 3 lcoop ( ( 𝑀𝑋𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) = { 𝑐𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } )
5 4 eleq2d ( ( 𝑀𝑋𝑉 ∈ 𝒫 𝐵 ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ 𝐶 ∈ { 𝑐𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) )
6 eqeq1 ( 𝑐 = 𝐶 → ( 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ↔ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) )
7 6 anbi2d ( 𝑐 = 𝐶 → ( ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) )
8 7 rexbidv ( 𝑐 = 𝐶 → ( ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) )
9 8 elrab ( 𝐶 ∈ { 𝑐𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ↔ ( 𝐶𝐵 ∧ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) )
10 5 9 bitrdi ( ( 𝑀𝑋𝑉 ∈ 𝒫 𝐵 ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝐶𝐵 ∧ ∃ 𝑠 ∈ ( 𝑅m 𝑉 ) ( 𝑠 finSupp ( 0g𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) )