| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcoop.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lcoop.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lcoop.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 4 |
1 2 3
|
lcoop |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) |
| 5 |
4
|
eleq2d |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ 𝐶 ∈ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ) ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ↔ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 9 |
8
|
elrab |
⊢ ( 𝐶 ∈ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) } ↔ ( 𝐶 ∈ 𝐵 ∧ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 10 |
5 9
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∃ 𝑠 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ 𝑆 ) ∧ 𝐶 = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |