Step |
Hyp |
Ref |
Expression |
1 |
|
lincfsuppcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincfsuppcl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincfsuppcl.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
4 |
|
lincfsuppcl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
simp1 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ LMod ) |
6 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
7 |
3 6
|
eqtri |
⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
8 |
7
|
oveq1i |
⊢ ( 𝑆 ↑m 𝑉 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) |
9 |
8
|
eleq2i |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ↔ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
10 |
9
|
biimpi |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
13 |
|
elpwg |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
14 |
1
|
a1i |
⊢ ( 𝑉 ∈ 𝑊 → 𝐵 = ( Base ‘ 𝑀 ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝑉 ∈ 𝑊 → ( Base ‘ 𝑀 ) = 𝐵 ) |
16 |
15
|
sseq2d |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ⊆ ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ 𝐵 ) ) |
17 |
13 16
|
bitr2d |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ⊆ 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
20 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
21 |
5 12 19 20
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
23 |
|
lmodcmn |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ CMnd ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ CMnd ) |
25 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) → 𝑉 ∈ 𝑊 ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑉 ∈ 𝑊 ) |
27 |
5
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
28 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → 𝐹 : 𝑉 ⟶ 𝑆 ) |
29 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝑆 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
30 |
29
|
ex |
⊢ ( 𝐹 : 𝑉 ⟶ 𝑆 → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) ) |
31 |
28 30
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) ) |
34 |
33
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
35 |
|
ssel |
⊢ ( 𝑉 ⊆ 𝐵 → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝐵 ) |
39 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
40 |
1 2 39 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ 𝐵 ) |
41 |
27 34 38 40
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ 𝐵 ) |
42 |
41
|
fmpttd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) : 𝑉 ⟶ 𝐵 ) |
43 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ) |
44 |
43
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ) |
45 |
|
simp3r |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝐹 finSupp 0 ) |
46 |
45 4
|
breqtrdi |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
47 |
2 3
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
48 |
5 19 44 46 47
|
syl211anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
49 |
1 22 24 26 42 48
|
gsumcl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ∈ 𝐵 ) |
50 |
21 49
|
eqeltrd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝐵 ) |