Step |
Hyp |
Ref |
Expression |
1 |
|
lincfsuppcl.b |
|
2 |
|
lincfsuppcl.r |
|
3 |
|
lincfsuppcl.s |
|
4 |
|
lincfsuppcl.0 |
|
5 |
|
simp1 |
|
6 |
2
|
fveq2i |
|
7 |
3 6
|
eqtri |
|
8 |
7
|
oveq1i |
|
9 |
8
|
eleq2i |
|
10 |
9
|
biimpi |
|
11 |
10
|
adantr |
|
12 |
11
|
3ad2ant3 |
|
13 |
|
elpwg |
|
14 |
1
|
a1i |
|
15 |
14
|
eqcomd |
|
16 |
15
|
sseq2d |
|
17 |
13 16
|
bitr2d |
|
18 |
17
|
biimpa |
|
19 |
18
|
3ad2ant2 |
|
20 |
|
lincval |
|
21 |
5 12 19 20
|
syl3anc |
|
22 |
|
eqid |
|
23 |
|
lmodcmn |
|
24 |
23
|
3ad2ant1 |
|
25 |
|
simpl |
|
26 |
25
|
3ad2ant2 |
|
27 |
5
|
adantr |
|
28 |
|
elmapi |
|
29 |
|
ffvelrn |
|
30 |
29
|
ex |
|
31 |
28 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32
|
3ad2ant3 |
|
34 |
33
|
imp |
|
35 |
|
ssel |
|
36 |
35
|
adantl |
|
37 |
36
|
3ad2ant2 |
|
38 |
37
|
imp |
|
39 |
|
eqid |
|
40 |
1 2 39 3
|
lmodvscl |
|
41 |
27 34 38 40
|
syl3anc |
|
42 |
41
|
fmpttd |
|
43 |
|
simpl |
|
44 |
43
|
3ad2ant3 |
|
45 |
|
simp3r |
|
46 |
45 4
|
breqtrdi |
|
47 |
2 3
|
scmfsupp |
|
48 |
5 19 44 46 47
|
syl211anc |
|
49 |
1 22 24 26 42 48
|
gsumcl |
|
50 |
21 49
|
eqeltrd |
|