Metamath Proof Explorer


Theorem lincfsuppcl

Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincfsuppcl.b B=BaseM
lincfsuppcl.r R=ScalarM
lincfsuppcl.s S=BaseR
lincfsuppcl.0 0˙=0R
Assertion lincfsuppcl MLModVWVBFSVfinSupp0˙FFlinCMVB

Proof

Step Hyp Ref Expression
1 lincfsuppcl.b B=BaseM
2 lincfsuppcl.r R=ScalarM
3 lincfsuppcl.s S=BaseR
4 lincfsuppcl.0 0˙=0R
5 simp1 MLModVWVBFSVfinSupp0˙FMLMod
6 2 fveq2i BaseR=BaseScalarM
7 3 6 eqtri S=BaseScalarM
8 7 oveq1i SV=BaseScalarMV
9 8 eleq2i FSVFBaseScalarMV
10 9 biimpi FSVFBaseScalarMV
11 10 adantr FSVfinSupp0˙FFBaseScalarMV
12 11 3ad2ant3 MLModVWVBFSVfinSupp0˙FFBaseScalarMV
13 elpwg VWV𝒫BaseMVBaseM
14 1 a1i VWB=BaseM
15 14 eqcomd VWBaseM=B
16 15 sseq2d VWVBaseMVB
17 13 16 bitr2d VWVBV𝒫BaseM
18 17 biimpa VWVBV𝒫BaseM
19 18 3ad2ant2 MLModVWVBFSVfinSupp0˙FV𝒫BaseM
20 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MvVFvMv
21 5 12 19 20 syl3anc MLModVWVBFSVfinSupp0˙FFlinCMV=MvVFvMv
22 eqid 0M=0M
23 lmodcmn MLModMCMnd
24 23 3ad2ant1 MLModVWVBFSVfinSupp0˙FMCMnd
25 simpl VWVBVW
26 25 3ad2ant2 MLModVWVBFSVfinSupp0˙FVW
27 5 adantr MLModVWVBFSVfinSupp0˙FvVMLMod
28 elmapi FSVF:VS
29 ffvelcdm F:VSvVFvS
30 29 ex F:VSvVFvS
31 28 30 syl FSVvVFvS
32 31 adantr FSVfinSupp0˙FvVFvS
33 32 3ad2ant3 MLModVWVBFSVfinSupp0˙FvVFvS
34 33 imp MLModVWVBFSVfinSupp0˙FvVFvS
35 ssel VBvVvB
36 35 adantl VWVBvVvB
37 36 3ad2ant2 MLModVWVBFSVfinSupp0˙FvVvB
38 37 imp MLModVWVBFSVfinSupp0˙FvVvB
39 eqid M=M
40 1 2 39 3 lmodvscl MLModFvSvBFvMvB
41 27 34 38 40 syl3anc MLModVWVBFSVfinSupp0˙FvVFvMvB
42 41 fmpttd MLModVWVBFSVfinSupp0˙FvVFvMv:VB
43 simpl FSVfinSupp0˙FFSV
44 43 3ad2ant3 MLModVWVBFSVfinSupp0˙FFSV
45 simp3r MLModVWVBFSVfinSupp0˙FfinSupp0˙F
46 45 4 breqtrdi MLModVWVBFSVfinSupp0˙FfinSupp0RF
47 2 3 scmfsupp MLModV𝒫BaseMFSVfinSupp0RFfinSupp0MvVFvMv
48 5 19 44 46 47 syl211anc MLModVWVBFSVfinSupp0˙FfinSupp0MvVFvMv
49 1 22 24 26 42 48 gsumcl MLModVWVBFSVfinSupp0˙FMvVFvMvB
50 21 49 eqeltrd MLModVWVBFSVfinSupp0˙FFlinCMVB