Metamath Proof Explorer


Theorem scmfsupp

Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses scmsuppfi.s S=ScalarM
scmsuppfi.r R=BaseS
Assertion scmfsupp MLModV𝒫BaseMARVfinSupp0SAfinSupp0MvVAvMv

Proof

Step Hyp Ref Expression
1 scmsuppfi.s S=ScalarM
2 scmsuppfi.r R=BaseS
3 funmpt FunvVAvMv
4 3 a1i MLModV𝒫BaseMARVfinSupp0SAFunvVAvMv
5 id finSupp0SAfinSupp0SA
6 5 fsuppimpd finSupp0SAAsupp0SFin
7 1 2 scmsuppfi MLModV𝒫BaseMARVAsupp0SFinvVAvMvsupp0MFin
8 6 7 syl3an3 MLModV𝒫BaseMARVfinSupp0SAvVAvMvsupp0MFin
9 mptexg V𝒫BaseMvVAvMvV
10 9 adantl MLModV𝒫BaseMvVAvMvV
11 10 3ad2ant1 MLModV𝒫BaseMARVfinSupp0SAvVAvMvV
12 fvex 0MV
13 isfsupp vVAvMvV0MVfinSupp0MvVAvMvFunvVAvMvvVAvMvsupp0MFin
14 11 12 13 sylancl MLModV𝒫BaseMARVfinSupp0SAfinSupp0MvVAvMvFunvVAvMvvVAvMvsupp0MFin
15 4 8 14 mpbir2and MLModV𝒫BaseMARVfinSupp0SAfinSupp0MvVAvMv