Metamath Proof Explorer


Theorem scmfsupp

Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses scmsuppfi.s S = Scalar M
scmsuppfi.r R = Base S
Assertion scmfsupp M LMod V 𝒫 Base M A R V finSupp 0 S A finSupp 0 M v V A v M v

Proof

Step Hyp Ref Expression
1 scmsuppfi.s S = Scalar M
2 scmsuppfi.r R = Base S
3 funmpt Fun v V A v M v
4 3 a1i M LMod V 𝒫 Base M A R V finSupp 0 S A Fun v V A v M v
5 id finSupp 0 S A finSupp 0 S A
6 5 fsuppimpd finSupp 0 S A A supp 0 S Fin
7 1 2 scmsuppfi M LMod V 𝒫 Base M A R V A supp 0 S Fin v V A v M v supp 0 M Fin
8 6 7 syl3an3 M LMod V 𝒫 Base M A R V finSupp 0 S A v V A v M v supp 0 M Fin
9 mptexg V 𝒫 Base M v V A v M v V
10 9 adantl M LMod V 𝒫 Base M v V A v M v V
11 10 3ad2ant1 M LMod V 𝒫 Base M A R V finSupp 0 S A v V A v M v V
12 fvex 0 M V
13 isfsupp v V A v M v V 0 M V finSupp 0 M v V A v M v Fun v V A v M v v V A v M v supp 0 M Fin
14 11 12 13 sylancl M LMod V 𝒫 Base M A R V finSupp 0 S A finSupp 0 M v V A v M v Fun v V A v M v v V A v M v supp 0 M Fin
15 4 8 14 mpbir2and M LMod V 𝒫 Base M A R V finSupp 0 S A finSupp 0 M v V A v M v