Metamath Proof Explorer


Theorem suppmptcfin

Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses suppmptcfin.b B = Base M
suppmptcfin.r R = Scalar M
suppmptcfin.0 0 ˙ = 0 R
suppmptcfin.1 1 ˙ = 1 R
suppmptcfin.f F = x V if x = X 1 ˙ 0 ˙
Assertion suppmptcfin M LMod V 𝒫 B X V F supp 0 ˙ Fin

Proof

Step Hyp Ref Expression
1 suppmptcfin.b B = Base M
2 suppmptcfin.r R = Scalar M
3 suppmptcfin.0 0 ˙ = 0 R
4 suppmptcfin.1 1 ˙ = 1 R
5 suppmptcfin.f F = x V if x = X 1 ˙ 0 ˙
6 eqeq1 x = v x = X v = X
7 6 ifbid x = v if x = X 1 ˙ 0 ˙ = if v = X 1 ˙ 0 ˙
8 7 cbvmptv x V if x = X 1 ˙ 0 ˙ = v V if v = X 1 ˙ 0 ˙
9 5 8 eqtri F = v V if v = X 1 ˙ 0 ˙
10 simp2 M LMod V 𝒫 B X V V 𝒫 B
11 3 fvexi 0 ˙ V
12 11 a1i M LMod V 𝒫 B X V 0 ˙ V
13 4 fvexi 1 ˙ V
14 13 a1i M LMod V 𝒫 B X V v V 1 ˙ V
15 11 a1i M LMod V 𝒫 B X V v V 0 ˙ V
16 14 15 ifcld M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ V
17 9 10 12 16 mptsuppd M LMod V 𝒫 B X V F supp 0 ˙ = v V | if v = X 1 ˙ 0 ˙ 0 ˙
18 snfi X Fin
19 2a1 v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
20 iffalse ¬ v = X if v = X 1 ˙ 0 ˙ = 0 ˙
21 20 adantr ¬ v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ = 0 ˙
22 21 neeq1d ¬ v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ 0 ˙ 0 ˙
23 eqid 0 ˙ = 0 ˙
24 eqneqall 0 ˙ = 0 ˙ 0 ˙ 0 ˙ v = X
25 23 24 ax-mp 0 ˙ 0 ˙ v = X
26 22 25 syl6bi ¬ v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
27 26 ex ¬ v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
28 19 27 pm2.61i M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
29 28 ralrimiva M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
30 rabsssn v V | if v = X 1 ˙ 0 ˙ 0 ˙ X v V if v = X 1 ˙ 0 ˙ 0 ˙ v = X
31 29 30 sylibr M LMod V 𝒫 B X V v V | if v = X 1 ˙ 0 ˙ 0 ˙ X
32 ssfi X Fin v V | if v = X 1 ˙ 0 ˙ 0 ˙ X v V | if v = X 1 ˙ 0 ˙ 0 ˙ Fin
33 18 31 32 sylancr M LMod V 𝒫 B X V v V | if v = X 1 ˙ 0 ˙ 0 ˙ Fin
34 17 33 eqeltrd M LMod V 𝒫 B X V F supp 0 ˙ Fin