Metamath Proof Explorer


Theorem suppmptcfin

Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses suppmptcfin.b B=BaseM
suppmptcfin.r R=ScalarM
suppmptcfin.0 0˙=0R
suppmptcfin.1 1˙=1R
suppmptcfin.f F=xVifx=X1˙0˙
Assertion suppmptcfin MLModV𝒫BXVFsupp0˙Fin

Proof

Step Hyp Ref Expression
1 suppmptcfin.b B=BaseM
2 suppmptcfin.r R=ScalarM
3 suppmptcfin.0 0˙=0R
4 suppmptcfin.1 1˙=1R
5 suppmptcfin.f F=xVifx=X1˙0˙
6 eqeq1 x=vx=Xv=X
7 6 ifbid x=vifx=X1˙0˙=ifv=X1˙0˙
8 7 cbvmptv xVifx=X1˙0˙=vVifv=X1˙0˙
9 5 8 eqtri F=vVifv=X1˙0˙
10 simp2 MLModV𝒫BXVV𝒫B
11 3 fvexi 0˙V
12 11 a1i MLModV𝒫BXV0˙V
13 4 fvexi 1˙V
14 13 a1i MLModV𝒫BXVvV1˙V
15 11 a1i MLModV𝒫BXVvV0˙V
16 14 15 ifcld MLModV𝒫BXVvVifv=X1˙0˙V
17 9 10 12 16 mptsuppd MLModV𝒫BXVFsupp0˙=vV|ifv=X1˙0˙0˙
18 snfi XFin
19 2a1 v=XMLModV𝒫BXVvVifv=X1˙0˙0˙v=X
20 iffalse ¬v=Xifv=X1˙0˙=0˙
21 20 adantr ¬v=XMLModV𝒫BXVvVifv=X1˙0˙=0˙
22 21 neeq1d ¬v=XMLModV𝒫BXVvVifv=X1˙0˙0˙0˙0˙
23 eqid 0˙=0˙
24 eqneqall 0˙=0˙0˙0˙v=X
25 23 24 ax-mp 0˙0˙v=X
26 22 25 syl6bi ¬v=XMLModV𝒫BXVvVifv=X1˙0˙0˙v=X
27 26 ex ¬v=XMLModV𝒫BXVvVifv=X1˙0˙0˙v=X
28 19 27 pm2.61i MLModV𝒫BXVvVifv=X1˙0˙0˙v=X
29 28 ralrimiva MLModV𝒫BXVvVifv=X1˙0˙0˙v=X
30 rabsssn vV|ifv=X1˙0˙0˙XvVifv=X1˙0˙0˙v=X
31 29 30 sylibr MLModV𝒫BXVvV|ifv=X1˙0˙0˙X
32 ssfi XFinvV|ifv=X1˙0˙0˙XvV|ifv=X1˙0˙0˙Fin
33 18 31 32 sylancr MLModV𝒫BXVvV|ifv=X1˙0˙0˙Fin
34 17 33 eqeltrd MLModV𝒫BXVFsupp0˙Fin