Metamath Proof Explorer


Theorem mptcfsupp

Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses suppmptcfin.b B = Base M
suppmptcfin.r R = Scalar M
suppmptcfin.0 0 ˙ = 0 R
suppmptcfin.1 1 ˙ = 1 R
suppmptcfin.f F = x V if x = X 1 ˙ 0 ˙
Assertion mptcfsupp M LMod V 𝒫 B X V finSupp 0 ˙ F

Proof

Step Hyp Ref Expression
1 suppmptcfin.b B = Base M
2 suppmptcfin.r R = Scalar M
3 suppmptcfin.0 0 ˙ = 0 R
4 suppmptcfin.1 1 ˙ = 1 R
5 suppmptcfin.f F = x V if x = X 1 ˙ 0 ˙
6 5 funmpt2 Fun F
7 6 a1i M LMod V 𝒫 B X V Fun F
8 1 2 3 4 5 suppmptcfin M LMod V 𝒫 B X V F supp 0 ˙ Fin
9 mptexg V 𝒫 B x V if x = X 1 ˙ 0 ˙ V
10 5 9 eqeltrid V 𝒫 B F V
11 10 3ad2ant2 M LMod V 𝒫 B X V F V
12 3 fvexi 0 ˙ V
13 isfsupp F V 0 ˙ V finSupp 0 ˙ F Fun F F supp 0 ˙ Fin
14 11 12 13 sylancl M LMod V 𝒫 B X V finSupp 0 ˙ F Fun F F supp 0 ˙ Fin
15 7 8 14 mpbir2and M LMod V 𝒫 B X V finSupp 0 ˙ F