Step |
Hyp |
Ref |
Expression |
1 |
|
suppmptcfin.b |
|- B = ( Base ` M ) |
2 |
|
suppmptcfin.r |
|- R = ( Scalar ` M ) |
3 |
|
suppmptcfin.0 |
|- .0. = ( 0g ` R ) |
4 |
|
suppmptcfin.1 |
|- .1. = ( 1r ` R ) |
5 |
|
suppmptcfin.f |
|- F = ( x e. V |-> if ( x = X , .1. , .0. ) ) |
6 |
5
|
funmpt2 |
|- Fun F |
7 |
6
|
a1i |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> Fun F ) |
8 |
1 2 3 4 5
|
suppmptcfin |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F supp .0. ) e. Fin ) |
9 |
|
mptexg |
|- ( V e. ~P B -> ( x e. V |-> if ( x = X , .1. , .0. ) ) e. _V ) |
10 |
5 9
|
eqeltrid |
|- ( V e. ~P B -> F e. _V ) |
11 |
10
|
3ad2ant2 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F e. _V ) |
12 |
3
|
fvexi |
|- .0. e. _V |
13 |
|
isfsupp |
|- ( ( F e. _V /\ .0. e. _V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
14 |
11 12 13
|
sylancl |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
15 |
7 8 14
|
mpbir2and |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F finSupp .0. ) |