Metamath Proof Explorer


Theorem mptcfsupp

Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses suppmptcfin.b
|- B = ( Base ` M )
suppmptcfin.r
|- R = ( Scalar ` M )
suppmptcfin.0
|- .0. = ( 0g ` R )
suppmptcfin.1
|- .1. = ( 1r ` R )
suppmptcfin.f
|- F = ( x e. V |-> if ( x = X , .1. , .0. ) )
Assertion mptcfsupp
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F finSupp .0. )

Proof

Step Hyp Ref Expression
1 suppmptcfin.b
 |-  B = ( Base ` M )
2 suppmptcfin.r
 |-  R = ( Scalar ` M )
3 suppmptcfin.0
 |-  .0. = ( 0g ` R )
4 suppmptcfin.1
 |-  .1. = ( 1r ` R )
5 suppmptcfin.f
 |-  F = ( x e. V |-> if ( x = X , .1. , .0. ) )
6 5 funmpt2
 |-  Fun F
7 6 a1i
 |-  ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> Fun F )
8 1 2 3 4 5 suppmptcfin
 |-  ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F supp .0. ) e. Fin )
9 mptexg
 |-  ( V e. ~P B -> ( x e. V |-> if ( x = X , .1. , .0. ) ) e. _V )
10 5 9 eqeltrid
 |-  ( V e. ~P B -> F e. _V )
11 10 3ad2ant2
 |-  ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F e. _V )
12 3 fvexi
 |-  .0. e. _V
13 isfsupp
 |-  ( ( F e. _V /\ .0. e. _V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) )
14 11 12 13 sylancl
 |-  ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) )
15 7 8 14 mpbir2and
 |-  ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F finSupp .0. )