Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppmptdmf.n | |- F/ x ph |
|
| fsuppmptdmf.f | |- F = ( x e. A |-> Y ) |
||
| fsuppmptdmf.a | |- ( ph -> A e. Fin ) |
||
| fsuppmptdmf.y | |- ( ( ph /\ x e. A ) -> Y e. V ) |
||
| fsuppmptdmf.z | |- ( ph -> Z e. W ) |
||
| Assertion | fsuppmptdmf | |- ( ph -> F finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdmf.n | |- F/ x ph |
|
| 2 | fsuppmptdmf.f | |- F = ( x e. A |-> Y ) |
|
| 3 | fsuppmptdmf.a | |- ( ph -> A e. Fin ) |
|
| 4 | fsuppmptdmf.y | |- ( ( ph /\ x e. A ) -> Y e. V ) |
|
| 5 | fsuppmptdmf.z | |- ( ph -> Z e. W ) |
|
| 6 | 1 4 2 | fmptdf | |- ( ph -> F : A --> V ) |
| 7 | 6 3 5 | fdmfifsupp | |- ( ph -> F finSupp Z ) |