Metamath Proof Explorer


Theorem fsuppmptdmf

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses fsuppmptdmf.n
|- F/ x ph
fsuppmptdmf.f
|- F = ( x e. A |-> Y )
fsuppmptdmf.a
|- ( ph -> A e. Fin )
fsuppmptdmf.y
|- ( ( ph /\ x e. A ) -> Y e. V )
fsuppmptdmf.z
|- ( ph -> Z e. W )
Assertion fsuppmptdmf
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 fsuppmptdmf.n
 |-  F/ x ph
2 fsuppmptdmf.f
 |-  F = ( x e. A |-> Y )
3 fsuppmptdmf.a
 |-  ( ph -> A e. Fin )
4 fsuppmptdmf.y
 |-  ( ( ph /\ x e. A ) -> Y e. V )
5 fsuppmptdmf.z
 |-  ( ph -> Z e. W )
6 1 4 2 fmptdf
 |-  ( ph -> F : A --> V )
7 6 3 5 fdmfifsupp
 |-  ( ph -> F finSupp Z )