Metamath Proof Explorer


Theorem fsuppmptdmf

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses fsuppmptdmf.n x φ
fsuppmptdmf.f F = x A Y
fsuppmptdmf.a φ A Fin
fsuppmptdmf.y φ x A Y V
fsuppmptdmf.z φ Z W
Assertion fsuppmptdmf φ finSupp Z F

Proof

Step Hyp Ref Expression
1 fsuppmptdmf.n x φ
2 fsuppmptdmf.f F = x A Y
3 fsuppmptdmf.a φ A Fin
4 fsuppmptdmf.y φ x A Y V
5 fsuppmptdmf.z φ Z W
6 1 4 2 fmptdf φ F : A V
7 6 3 5 fdmfifsupp φ finSupp Z F