Metamath Proof Explorer
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fsuppmptdmf.n |
⊢ Ⅎ 𝑥 𝜑 |
|
|
fsuppmptdmf.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) |
|
|
fsuppmptdmf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsuppmptdmf.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝑉 ) |
|
|
fsuppmptdmf.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
|
Assertion |
fsuppmptdmf |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmptdmf.n |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
fsuppmptdmf.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) |
3 |
|
fsuppmptdmf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fsuppmptdmf.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝑉 ) |
5 |
|
fsuppmptdmf.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
6 |
1 4 2
|
fmptdf |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑉 ) |
7 |
6 3 5
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |