Metamath Proof Explorer


Theorem fsuppmptdmf

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses fsuppmptdmf.n 𝑥 𝜑
fsuppmptdmf.f 𝐹 = ( 𝑥𝐴𝑌 )
fsuppmptdmf.a ( 𝜑𝐴 ∈ Fin )
fsuppmptdmf.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝑉 )
fsuppmptdmf.z ( 𝜑𝑍𝑊 )
Assertion fsuppmptdmf ( 𝜑𝐹 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppmptdmf.n 𝑥 𝜑
2 fsuppmptdmf.f 𝐹 = ( 𝑥𝐴𝑌 )
3 fsuppmptdmf.a ( 𝜑𝐴 ∈ Fin )
4 fsuppmptdmf.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝑉 )
5 fsuppmptdmf.z ( 𝜑𝑍𝑊 )
6 1 4 2 fmptdf ( 𝜑𝐹 : 𝐴𝑉 )
7 6 3 5 fdmfifsupp ( 𝜑𝐹 finSupp 𝑍 )