Metamath Proof Explorer


Theorem mptcfsupp

Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses suppmptcfin.b 𝐵 = ( Base ‘ 𝑀 )
suppmptcfin.r 𝑅 = ( Scalar ‘ 𝑀 )
suppmptcfin.0 0 = ( 0g𝑅 )
suppmptcfin.1 1 = ( 1r𝑅 )
suppmptcfin.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) )
Assertion mptcfsupp ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → 𝐹 finSupp 0 )

Proof

Step Hyp Ref Expression
1 suppmptcfin.b 𝐵 = ( Base ‘ 𝑀 )
2 suppmptcfin.r 𝑅 = ( Scalar ‘ 𝑀 )
3 suppmptcfin.0 0 = ( 0g𝑅 )
4 suppmptcfin.1 1 = ( 1r𝑅 )
5 suppmptcfin.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) )
6 5 funmpt2 Fun 𝐹
7 6 a1i ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → Fun 𝐹 )
8 1 2 3 4 5 suppmptcfin ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin )
9 mptexg ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) ∈ V )
10 5 9 eqeltrid ( 𝑉 ∈ 𝒫 𝐵𝐹 ∈ V )
11 10 3ad2ant2 ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → 𝐹 ∈ V )
12 3 fvexi 0 ∈ V
13 isfsupp ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) )
14 11 12 13 sylancl ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) )
15 7 8 14 mpbir2and ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → 𝐹 finSupp 0 )