Step |
Hyp |
Ref |
Expression |
1 |
|
suppmptcfin.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
suppmptcfin.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
suppmptcfin.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
suppmptcfin.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
suppmptcfin.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) |
6 |
5
|
funmpt2 |
⊢ Fun 𝐹 |
7 |
6
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → Fun 𝐹 ) |
8 |
1 2 3 4 5
|
suppmptcfin |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin ) |
9 |
|
mptexg |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) ∈ V ) |
10 |
5 9
|
eqeltrid |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ V ) |
12 |
3
|
fvexi |
⊢ 0 ∈ V |
13 |
|
isfsupp |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) ) |
14 |
11 12 13
|
sylancl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) ) |
15 |
7 8 14
|
mpbir2and |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 finSupp 0 ) |