Metamath Proof Explorer


Theorem mptexg

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptexg ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 funmpt Fun ( 𝑥𝐴𝐵 )
2 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
3 2 dmmptss dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴
4 ssexg ( ( dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴𝐴𝑉 ) → dom ( 𝑥𝐴𝐵 ) ∈ V )
5 3 4 mpan ( 𝐴𝑉 → dom ( 𝑥𝐴𝐵 ) ∈ V )
6 funex ( ( Fun ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ∈ V ) → ( 𝑥𝐴𝐵 ) ∈ V )
7 1 5 6 sylancr ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )