Metamath Proof Explorer


Theorem mptexgf

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypothesis mptexgf.a 𝑥 𝐴
Assertion mptexgf ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 mptexgf.a 𝑥 𝐴
2 funmpt Fun ( 𝑥𝐴𝐵 )
3 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
4 3 dmmpt dom ( 𝑥𝐴𝐵 ) = { 𝑥𝐴𝐵 ∈ V }
5 trud ( 𝐵 ∈ V → ⊤ )
6 5 rgenw 𝑥𝐴 ( 𝐵 ∈ V → ⊤ )
7 ss2rab ( { 𝑥𝐴𝐵 ∈ V } ⊆ { 𝑥𝐴 ∣ ⊤ } ↔ ∀ 𝑥𝐴 ( 𝐵 ∈ V → ⊤ ) )
8 6 7 mpbir { 𝑥𝐴𝐵 ∈ V } ⊆ { 𝑥𝐴 ∣ ⊤ }
9 1 rabtru { 𝑥𝐴 ∣ ⊤ } = 𝐴
10 8 9 sseqtri { 𝑥𝐴𝐵 ∈ V } ⊆ 𝐴
11 4 10 eqsstri dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴
12 ssexg ( ( dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴𝐴𝑉 ) → dom ( 𝑥𝐴𝐵 ) ∈ V )
13 11 12 mpan ( 𝐴𝑉 → dom ( 𝑥𝐴𝐵 ) ∈ V )
14 funex ( ( Fun ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ∈ V ) → ( 𝑥𝐴𝐵 ) ∈ V )
15 2 13 14 sylancr ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )