Metamath Proof Explorer


Theorem mptexgf

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypothesis mptexgf.a
|- F/_ x A
Assertion mptexgf
|- ( A e. V -> ( x e. A |-> B ) e. _V )

Proof

Step Hyp Ref Expression
1 mptexgf.a
 |-  F/_ x A
2 funmpt
 |-  Fun ( x e. A |-> B )
3 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
4 3 dmmpt
 |-  dom ( x e. A |-> B ) = { x e. A | B e. _V }
5 trud
 |-  ( B e. _V -> T. )
6 5 rgenw
 |-  A. x e. A ( B e. _V -> T. )
7 ss2rab
 |-  ( { x e. A | B e. _V } C_ { x e. A | T. } <-> A. x e. A ( B e. _V -> T. ) )
8 6 7 mpbir
 |-  { x e. A | B e. _V } C_ { x e. A | T. }
9 1 rabtru
 |-  { x e. A | T. } = A
10 8 9 sseqtri
 |-  { x e. A | B e. _V } C_ A
11 4 10 eqsstri
 |-  dom ( x e. A |-> B ) C_ A
12 ssexg
 |-  ( ( dom ( x e. A |-> B ) C_ A /\ A e. V ) -> dom ( x e. A |-> B ) e. _V )
13 11 12 mpan
 |-  ( A e. V -> dom ( x e. A |-> B ) e. _V )
14 funex
 |-  ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. _V ) -> ( x e. A |-> B ) e. _V )
15 2 13 14 sylancr
 |-  ( A e. V -> ( x e. A |-> B ) e. _V )