Metamath Proof Explorer


Theorem mptexgf

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypothesis mptexgf.a _xA
Assertion mptexgf AVxABV

Proof

Step Hyp Ref Expression
1 mptexgf.a _xA
2 funmpt FunxAB
3 eqid xAB=xAB
4 3 dmmpt domxAB=xA|BV
5 tru
6 5 2a1i xABV
7 6 ss2rabi xA|BVxA|
8 1 rabtru xA|=A
9 7 8 sseqtri xA|BVA
10 4 9 eqsstri domxABA
11 ssexg domxABAAVdomxABV
12 10 11 mpan AVdomxABV
13 funex FunxABdomxABVxABV
14 2 12 13 sylancr AVxABV