Metamath Proof Explorer


Theorem suppmptcfin

Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses suppmptcfin.b 𝐵 = ( Base ‘ 𝑀 )
suppmptcfin.r 𝑅 = ( Scalar ‘ 𝑀 )
suppmptcfin.0 0 = ( 0g𝑅 )
suppmptcfin.1 1 = ( 1r𝑅 )
suppmptcfin.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) )
Assertion suppmptcfin ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 suppmptcfin.b 𝐵 = ( Base ‘ 𝑀 )
2 suppmptcfin.r 𝑅 = ( Scalar ‘ 𝑀 )
3 suppmptcfin.0 0 = ( 0g𝑅 )
4 suppmptcfin.1 1 = ( 1r𝑅 )
5 suppmptcfin.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) )
6 eqeq1 ( 𝑥 = 𝑣 → ( 𝑥 = 𝑋𝑣 = 𝑋 ) )
7 6 ifbid ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑋 , 1 , 0 ) = if ( 𝑣 = 𝑋 , 1 , 0 ) )
8 7 cbvmptv ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) = ( 𝑣𝑉 ↦ if ( 𝑣 = 𝑋 , 1 , 0 ) )
9 5 8 eqtri 𝐹 = ( 𝑣𝑉 ↦ if ( 𝑣 = 𝑋 , 1 , 0 ) )
10 simp2 ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → 𝑉 ∈ 𝒫 𝐵 )
11 3 fvexi 0 ∈ V
12 11 a1i ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → 0 ∈ V )
13 4 fvexi 1 ∈ V
14 13 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → 1 ∈ V )
15 11 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → 0 ∈ V )
16 14 15 ifcld ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → if ( 𝑣 = 𝑋 , 1 , 0 ) ∈ V )
17 9 10 12 16 mptsuppd ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ( 𝐹 supp 0 ) = { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } )
18 snfi { 𝑋 } ∈ Fin
19 2a1 ( 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) ) )
20 iffalse ( ¬ 𝑣 = 𝑋 → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 )
21 20 adantr ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) ) → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 )
22 21 neeq1d ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 000 ) )
23 eqid 0 = 0
24 eqneqall ( 0 = 0 → ( 00𝑣 = 𝑋 ) )
25 23 24 ax-mp ( 00𝑣 = 𝑋 )
26 22 25 syl6bi ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) )
27 26 ex ( ¬ 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) ) )
28 19 27 pm2.61i ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) ∧ 𝑣𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) )
29 28 ralrimiva ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ∀ 𝑣𝑉 ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) )
30 rabsssn ( { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } ↔ ∀ 𝑣𝑉 ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0𝑣 = 𝑋 ) )
31 29 30 sylibr ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } )
32 ssfi ( ( { 𝑋 } ∈ Fin ∧ { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } ) → { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ∈ Fin )
33 18 31 32 sylancr ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → { 𝑣𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ∈ Fin )
34 17 33 eqeltrd ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin )