Step |
Hyp |
Ref |
Expression |
1 |
|
suppmptcfin.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
suppmptcfin.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
suppmptcfin.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
suppmptcfin.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
suppmptcfin.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = 𝑋 ↔ 𝑣 = 𝑋 ) ) |
7 |
6
|
ifbid |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑋 , 1 , 0 ) = if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) = ( 𝑣 ∈ 𝑉 ↦ if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
9 |
5 8
|
eqtri |
⊢ 𝐹 = ( 𝑣 ∈ 𝑉 ↦ if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
10 |
|
simp2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑉 ∈ 𝒫 𝐵 ) |
11 |
3
|
fvexi |
⊢ 0 ∈ V |
12 |
11
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 0 ∈ V ) |
13 |
4
|
fvexi |
⊢ 1 ∈ V |
14 |
13
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → 1 ∈ V ) |
15 |
11
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → 0 ∈ V ) |
16 |
14 15
|
ifcld |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → if ( 𝑣 = 𝑋 , 1 , 0 ) ∈ V ) |
17 |
9 10 12 16
|
mptsuppd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 supp 0 ) = { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ) |
18 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
19 |
|
2a1 |
⊢ ( 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) ) |
20 |
|
iffalse |
⊢ ( ¬ 𝑣 = 𝑋 → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 ) |
21 |
20
|
adantr |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 ) |
22 |
21
|
neeq1d |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 ↔ 0 ≠ 0 ) ) |
23 |
|
eqid |
⊢ 0 = 0 |
24 |
|
eqneqall |
⊢ ( 0 = 0 → ( 0 ≠ 0 → 𝑣 = 𝑋 ) ) |
25 |
23 24
|
ax-mp |
⊢ ( 0 ≠ 0 → 𝑣 = 𝑋 ) |
26 |
22 25
|
syl6bi |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) |
27 |
26
|
ex |
⊢ ( ¬ 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) ) |
28 |
19 27
|
pm2.61i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ∀ 𝑣 ∈ 𝑉 ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) |
30 |
|
rabsssn |
⊢ ( { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } ↔ ∀ 𝑣 ∈ 𝑉 ( if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 → 𝑣 = 𝑋 ) ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } ) |
32 |
|
ssfi |
⊢ ( ( { 𝑋 } ∈ Fin ∧ { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ⊆ { 𝑋 } ) → { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ∈ Fin ) |
33 |
18 31 32
|
sylancr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∈ 𝑉 ∣ if ( 𝑣 = 𝑋 , 1 , 0 ) ≠ 0 } ∈ Fin ) |
34 |
17 33
|
eqeltrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin ) |