Metamath Proof Explorer


Theorem rabsssn

Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019)

Ref Expression
Assertion rabsssn ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 } ↔ ∀ 𝑥𝑉 ( 𝜑𝑥 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝑉𝜑 } = { 𝑥 ∣ ( 𝑥𝑉𝜑 ) }
2 df-sn { 𝑋 } = { 𝑥𝑥 = 𝑋 }
3 1 2 sseq12i ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 } ↔ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ⊆ { 𝑥𝑥 = 𝑋 } )
4 ss2ab ( { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ⊆ { 𝑥𝑥 = 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → 𝑥 = 𝑋 ) )
5 impexp ( ( ( 𝑥𝑉𝜑 ) → 𝑥 = 𝑋 ) ↔ ( 𝑥𝑉 → ( 𝜑𝑥 = 𝑋 ) ) )
6 5 albii ( ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → 𝑥 = 𝑋 ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝜑𝑥 = 𝑋 ) ) )
7 df-ral ( ∀ 𝑥𝑉 ( 𝜑𝑥 = 𝑋 ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝜑𝑥 = 𝑋 ) ) )
8 6 7 bitr4i ( ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → 𝑥 = 𝑋 ) ↔ ∀ 𝑥𝑉 ( 𝜑𝑥 = 𝑋 ) )
9 3 4 8 3bitri ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 } ↔ ∀ 𝑥𝑉 ( 𝜑𝑥 = 𝑋 ) )