Metamath Proof Explorer


Theorem mptsuppd

Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses mptsuppdifd.f F=xAB
mptsuppdifd.a φAV
mptsuppdifd.z φZW
mptsuppd.b φxABU
Assertion mptsuppd φFsuppZ=xA|BZ

Proof

Step Hyp Ref Expression
1 mptsuppdifd.f F=xAB
2 mptsuppdifd.a φAV
3 mptsuppdifd.z φZW
4 mptsuppd.b φxABU
5 1 2 3 mptsuppdifd φFsuppZ=xA|BVZ
6 eldifsn BVZBVBZ
7 4 elexd φxABV
8 7 biantrurd φxABZBVBZ
9 6 8 bitr4id φxABVZBZ
10 9 rabbidva φxA|BVZ=xA|BZ
11 5 10 eqtrd φFsuppZ=xA|BZ