Metamath Proof Explorer


Theorem mptsuppdifd

Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019)

Ref Expression
Hypotheses mptsuppdifd.f F=xAB
mptsuppdifd.a φAV
mptsuppdifd.z φZW
Assertion mptsuppdifd φFsuppZ=xA|BVZ

Proof

Step Hyp Ref Expression
1 mptsuppdifd.f F=xAB
2 mptsuppdifd.a φAV
3 mptsuppdifd.z φZW
4 2 mptexd φxABV
5 1 4 eqeltrid φFV
6 suppimacnv FVZWFsuppZ=F-1VZ
7 5 3 6 syl2anc φFsuppZ=F-1VZ
8 1 mptpreima F-1VZ=xA|BVZ
9 7 8 eqtrdi φFsuppZ=xA|BVZ