Metamath Proof Explorer


Theorem mptsuppdifd

Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019)

Ref Expression
Hypotheses mptsuppdifd.f
|- F = ( x e. A |-> B )
mptsuppdifd.a
|- ( ph -> A e. V )
mptsuppdifd.z
|- ( ph -> Z e. W )
Assertion mptsuppdifd
|- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } )

Proof

Step Hyp Ref Expression
1 mptsuppdifd.f
 |-  F = ( x e. A |-> B )
2 mptsuppdifd.a
 |-  ( ph -> A e. V )
3 mptsuppdifd.z
 |-  ( ph -> Z e. W )
4 2 mptexd
 |-  ( ph -> ( x e. A |-> B ) e. _V )
5 1 4 eqeltrid
 |-  ( ph -> F e. _V )
6 suppimacnv
 |-  ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
7 5 3 6 syl2anc
 |-  ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
8 1 mptpreima
 |-  ( `' F " ( _V \ { Z } ) ) = { x e. A | B e. ( _V \ { Z } ) }
9 7 8 syl6eq
 |-  ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } )