Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | extmptsuppeq.b | |
|
extmptsuppeq.a | |
||
extmptsuppeq.z | |
||
Assertion | extmptsuppeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extmptsuppeq.b | |
|
2 | extmptsuppeq.a | |
|
3 | extmptsuppeq.z | |
|
4 | 2 | adantl | |
5 | 4 | sseld | |
6 | 5 | anim1d | |
7 | eldif | |
|
8 | 3 | adantll | |
9 | 7 8 | sylan2br | |
10 | 9 | expr | |
11 | elsn2g | |
|
12 | elndif | |
|
13 | 11 12 | syl6bir | |
14 | 13 | ad2antrr | |
15 | 10 14 | syld | |
16 | 15 | con4d | |
17 | 16 | impr | |
18 | simprr | |
|
19 | 17 18 | jca | |
20 | 19 | ex | |
21 | 6 20 | impbid | |
22 | 21 | rabbidva2 | |
23 | eqid | |
|
24 | 1 2 | ssexd | |
25 | 24 | adantl | |
26 | simpl | |
|
27 | 23 25 26 | mptsuppdifd | |
28 | eqid | |
|
29 | 1 | adantl | |
30 | 28 29 26 | mptsuppdifd | |
31 | 22 27 30 | 3eqtr4d | |
32 | 31 | ex | |
33 | simpr | |
|
34 | supp0prc | |
|
35 | 33 34 | nsyl5 | |
36 | simpr | |
|
37 | supp0prc | |
|
38 | 36 37 | nsyl5 | |
39 | 35 38 | eqtr4d | |
40 | 39 | a1d | |
41 | 32 40 | pm2.61i | |