Metamath Proof Explorer


Theorem extmptsuppeq

Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 30-Jun-2019)

Ref Expression
Hypotheses extmptsuppeq.b φBW
extmptsuppeq.a φAB
extmptsuppeq.z φnBAX=Z
Assertion extmptsuppeq φnAXsuppZ=nBXsuppZ

Proof

Step Hyp Ref Expression
1 extmptsuppeq.b φBW
2 extmptsuppeq.a φAB
3 extmptsuppeq.z φnBAX=Z
4 2 adantl ZVφAB
5 4 sseld ZVφnAnB
6 5 anim1d ZVφnAXVZnBXVZ
7 eldif nBAnB¬nA
8 3 adantll ZVφnBAX=Z
9 7 8 sylan2br ZVφnB¬nAX=Z
10 9 expr ZVφnB¬nAX=Z
11 elsn2g ZVXZX=Z
12 elndif XZ¬XVZ
13 11 12 syl6bir ZVX=Z¬XVZ
14 13 ad2antrr ZVφnBX=Z¬XVZ
15 10 14 syld ZVφnB¬nA¬XVZ
16 15 con4d ZVφnBXVZnA
17 16 impr ZVφnBXVZnA
18 simprr ZVφnBXVZXVZ
19 17 18 jca ZVφnBXVZnAXVZ
20 19 ex ZVφnBXVZnAXVZ
21 6 20 impbid ZVφnAXVZnBXVZ
22 21 rabbidva2 ZVφnA|XVZ=nB|XVZ
23 eqid nAX=nAX
24 1 2 ssexd φAV
25 24 adantl ZVφAV
26 simpl ZVφZV
27 23 25 26 mptsuppdifd ZVφnAXsuppZ=nA|XVZ
28 eqid nBX=nBX
29 1 adantl ZVφBW
30 28 29 26 mptsuppdifd ZVφnBXsuppZ=nB|XVZ
31 22 27 30 3eqtr4d ZVφnAXsuppZ=nBXsuppZ
32 31 ex ZVφnAXsuppZ=nBXsuppZ
33 simpr nAXVZVZV
34 supp0prc ¬nAXVZVnAXsuppZ=
35 33 34 nsyl5 ¬ZVnAXsuppZ=
36 simpr nBXVZVZV
37 supp0prc ¬nBXVZVnBXsuppZ=
38 36 37 nsyl5 ¬ZVnBXsuppZ=
39 35 38 eqtr4d ¬ZVnAXsuppZ=nBXsuppZ
40 39 a1d ¬ZVφnAXsuppZ=nBXsuppZ
41 32 40 pm2.61i φnAXsuppZ=nBXsuppZ