| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extmptsuppeq.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 2 |
|
extmptsuppeq.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 3 |
|
extmptsuppeq.z |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 = 𝑍 ) |
| 4 |
2
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ⊆ 𝐵 ) |
| 5 |
4
|
sseld |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( 𝑛 ∈ 𝐴 → 𝑛 ∈ 𝐵 ) ) |
| 6 |
5
|
anim1d |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) → ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 7 |
|
eldif |
⊢ ( 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑛 ∈ 𝐵 ∧ ¬ 𝑛 ∈ 𝐴 ) ) |
| 8 |
3
|
adantll |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 = 𝑍 ) |
| 9 |
7 8
|
sylan2br |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ ¬ 𝑛 ∈ 𝐴 ) ) → 𝑋 = 𝑍 ) |
| 10 |
9
|
expr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( ¬ 𝑛 ∈ 𝐴 → 𝑋 = 𝑍 ) ) |
| 11 |
|
elsn2g |
⊢ ( 𝑍 ∈ V → ( 𝑋 ∈ { 𝑍 } ↔ 𝑋 = 𝑍 ) ) |
| 12 |
|
elndif |
⊢ ( 𝑋 ∈ { 𝑍 } → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) |
| 13 |
11 12
|
biimtrrdi |
⊢ ( 𝑍 ∈ V → ( 𝑋 = 𝑍 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( 𝑋 = 𝑍 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 15 |
10 14
|
syld |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( ¬ 𝑛 ∈ 𝐴 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 16 |
15
|
con4d |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( 𝑋 ∈ ( V ∖ { 𝑍 } ) → 𝑛 ∈ 𝐴 ) ) |
| 17 |
16
|
impr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → 𝑛 ∈ 𝐴 ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → 𝑋 ∈ ( V ∖ { 𝑍 } ) ) |
| 19 |
17 18
|
jca |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) → ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 21 |
6 20
|
impbid |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ↔ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 22 |
21
|
rabbidva2 |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 𝑛 ∈ 𝐴 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } = { 𝑛 ∈ 𝐵 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 23 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) |
| 24 |
1 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ∈ V ) |
| 26 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) |
| 27 |
23 25 26
|
mptsuppdifd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = { 𝑛 ∈ 𝐴 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 28 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) |
| 29 |
1
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐵 ∈ 𝑊 ) |
| 30 |
28 29 26
|
mptsuppdifd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = { 𝑛 ∈ 𝐵 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 31 |
22 27 30
|
3eqtr4d |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑍 ∈ V → ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
| 34 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 35 |
33 34
|
nsyl5 |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
| 37 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 38 |
36 37
|
nsyl5 |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 39 |
35 38
|
eqtr4d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |
| 40 |
39
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) ) |
| 41 |
32 40
|
pm2.61i |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |