Metamath Proof Explorer


Theorem suppfnss

Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 6-Jun-2022)

Ref Expression
Assertion suppfnss F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F supp Z G supp Z

Proof

Step Hyp Ref Expression
1 simpr1 F Fn A G Fn B A B B V Z W A B
2 fndm F Fn A dom F = A
3 2 ad2antrr F Fn A G Fn B A B B V Z W dom F = A
4 fndm G Fn B dom G = B
5 4 ad2antlr F Fn A G Fn B A B B V Z W dom G = B
6 1 3 5 3sstr4d F Fn A G Fn B A B B V Z W dom F dom G
7 6 adantr F Fn A G Fn B A B B V Z W x A G x = Z F x = Z dom F dom G
8 2 eleq2d F Fn A y dom F y A
9 8 ad2antrr F Fn A G Fn B A B B V Z W y dom F y A
10 fveqeq2 x = y G x = Z G y = Z
11 fveqeq2 x = y F x = Z F y = Z
12 10 11 imbi12d x = y G x = Z F x = Z G y = Z F y = Z
13 12 rspcv y A x A G x = Z F x = Z G y = Z F y = Z
14 9 13 syl6bi F Fn A G Fn B A B B V Z W y dom F x A G x = Z F x = Z G y = Z F y = Z
15 14 com23 F Fn A G Fn B A B B V Z W x A G x = Z F x = Z y dom F G y = Z F y = Z
16 15 imp31 F Fn A G Fn B A B B V Z W x A G x = Z F x = Z y dom F G y = Z F y = Z
17 16 necon3d F Fn A G Fn B A B B V Z W x A G x = Z F x = Z y dom F F y Z G y Z
18 17 ex F Fn A G Fn B A B B V Z W x A G x = Z F x = Z y dom F F y Z G y Z
19 18 com23 F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F y Z y dom F G y Z
20 19 3imp F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F y Z y dom F G y Z
21 7 20 rabssrabd F Fn A G Fn B A B B V Z W x A G x = Z F x = Z y dom F | F y Z y dom G | G y Z
22 fnfun F Fn A Fun F
23 22 ad2antrr F Fn A G Fn B A B B V Z W Fun F
24 simpl F Fn A G Fn B F Fn A
25 ssexg A B B V A V
26 25 3adant3 A B B V Z W A V
27 fnex F Fn A A V F V
28 24 26 27 syl2an F Fn A G Fn B A B B V Z W F V
29 simpr3 F Fn A G Fn B A B B V Z W Z W
30 suppval1 Fun F F V Z W F supp Z = y dom F | F y Z
31 23 28 29 30 syl3anc F Fn A G Fn B A B B V Z W F supp Z = y dom F | F y Z
32 fnfun G Fn B Fun G
33 32 ad2antlr F Fn A G Fn B A B B V Z W Fun G
34 simpr F Fn A G Fn B G Fn B
35 simp2 A B B V Z W B V
36 fnex G Fn B B V G V
37 34 35 36 syl2an F Fn A G Fn B A B B V Z W G V
38 suppval1 Fun G G V Z W G supp Z = y dom G | G y Z
39 33 37 29 38 syl3anc F Fn A G Fn B A B B V Z W G supp Z = y dom G | G y Z
40 31 39 sseq12d F Fn A G Fn B A B B V Z W F supp Z G supp Z y dom F | F y Z y dom G | G y Z
41 40 adantr F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F supp Z G supp Z y dom F | F y Z y dom G | G y Z
42 21 41 mpbird F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F supp Z G supp Z
43 42 ex F Fn A G Fn B A B B V Z W x A G x = Z F x = Z F supp Z G supp Z