Metamath Proof Explorer


Theorem suppval1

Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019)

Ref Expression
Assertion suppval1 FunXXVZWXsuppZ=idomX|XiZ

Proof

Step Hyp Ref Expression
1 suppval XVZWXsuppZ=idomX|XiZ
2 1 3adant1 FunXXVZWXsuppZ=idomX|XiZ
3 funfn FunXXFndomX
4 3 biimpi FunXXFndomX
5 4 3ad2ant1 FunXXVZWXFndomX
6 fnsnfv XFndomXidomXXi=Xi
7 5 6 sylan FunXXVZWidomXXi=Xi
8 7 eqcomd FunXXVZWidomXXi=Xi
9 8 neeq1d FunXXVZWidomXXiZXiZ
10 fvex XiV
11 sneqbg XiVXi=ZXi=Z
12 10 11 mp1i FunXXVZWidomXXi=ZXi=Z
13 12 necon3bid FunXXVZWidomXXiZXiZ
14 9 13 bitrd FunXXVZWidomXXiZXiZ
15 14 rabbidva FunXXVZWidomX|XiZ=idomX|XiZ
16 2 15 eqtrd FunXXVZWXsuppZ=idomX|XiZ