Metamath Proof Explorer


Theorem scmsuppfi

Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypotheses scmsuppfi.s S = Scalar M
scmsuppfi.r R = Base S
Assertion scmsuppfi M LMod V 𝒫 Base M A R V A supp 0 S Fin v V A v M v supp 0 M Fin

Proof

Step Hyp Ref Expression
1 scmsuppfi.s S = Scalar M
2 scmsuppfi.r R = Base S
3 simp3 M LMod V 𝒫 Base M A R V A supp 0 S Fin A supp 0 S Fin
4 simpll M LMod V 𝒫 Base M A R V M LMod
5 simplr M LMod V 𝒫 Base M A R V V 𝒫 Base M
6 simpr M LMod V 𝒫 Base M A R V A R V
7 4 5 6 3jca M LMod V 𝒫 Base M A R V M LMod V 𝒫 Base M A R V
8 7 3adant3 M LMod V 𝒫 Base M A R V A supp 0 S Fin M LMod V 𝒫 Base M A R V
9 1 2 scmsuppss M LMod V 𝒫 Base M A R V v V A v M v supp 0 M A supp 0 S
10 8 9 syl M LMod V 𝒫 Base M A R V A supp 0 S Fin v V A v M v supp 0 M A supp 0 S
11 ssfi A supp 0 S Fin v V A v M v supp 0 M A supp 0 S v V A v M v supp 0 M Fin
12 3 10 11 syl2anc M LMod V 𝒫 Base M A R V A supp 0 S Fin v V A v M v supp 0 M Fin