Metamath Proof Explorer


Theorem scmsuppfi

Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypotheses scmsuppfi.s S=ScalarM
scmsuppfi.r R=BaseS
Assertion scmsuppfi MLModV𝒫BaseMARVAsupp0SFinvVAvMvsupp0MFin

Proof

Step Hyp Ref Expression
1 scmsuppfi.s S=ScalarM
2 scmsuppfi.r R=BaseS
3 simp3 MLModV𝒫BaseMARVAsupp0SFinAsupp0SFin
4 simpll MLModV𝒫BaseMARVMLMod
5 simplr MLModV𝒫BaseMARVV𝒫BaseM
6 simpr MLModV𝒫BaseMARVARV
7 4 5 6 3jca MLModV𝒫BaseMARVMLModV𝒫BaseMARV
8 7 3adant3 MLModV𝒫BaseMARVAsupp0SFinMLModV𝒫BaseMARV
9 1 2 scmsuppss MLModV𝒫BaseMARVvVAvMvsupp0MAsupp0S
10 8 9 syl MLModV𝒫BaseMARVAsupp0SFinvVAvMvsupp0MAsupp0S
11 ssfi Asupp0SFinvVAvMvsupp0MAsupp0SvVAvMvsupp0MFin
12 3 10 11 syl2anc MLModV𝒫BaseMARVAsupp0SFinvVAvMvsupp0MFin