Metamath Proof Explorer


Theorem scmsuppss

Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypotheses scmsuppss.s S = Scalar M
scmsuppss.r R = Base S
Assertion scmsuppss M LMod V 𝒫 Base M A R V v V A v M v supp 0 M A supp 0 S

Proof

Step Hyp Ref Expression
1 scmsuppss.s S = Scalar M
2 scmsuppss.r R = Base S
3 elmapi A R V A : V R
4 fdm A : V R dom A = V
5 eqidd dom A = V A : V R V 𝒫 Base M M LMod x V v V A v M v = v V A v M v
6 fveq2 v = x A v = A x
7 id v = x v = x
8 6 7 oveq12d v = x A v M v = A x M x
9 8 adantl dom A = V A : V R V 𝒫 Base M M LMod x V v = x A v M v = A x M x
10 simpr dom A = V A : V R V 𝒫 Base M M LMod x V x V
11 ovex A x M x V
12 11 a1i dom A = V A : V R V 𝒫 Base M M LMod x V A x M x V
13 5 9 10 12 fvmptd dom A = V A : V R V 𝒫 Base M M LMod x V v V A v M v x = A x M x
14 13 neeq1d dom A = V A : V R V 𝒫 Base M M LMod x V v V A v M v x 0 M A x M x 0 M
15 oveq1 A x = 0 S A x M x = 0 S M x
16 simplrr dom A = V A : V R V 𝒫 Base M M LMod x V M LMod
17 elelpwi x V V 𝒫 Base M x Base M
18 17 expcom V 𝒫 Base M x V x Base M
19 18 adantr V 𝒫 Base M M LMod x V x Base M
20 19 adantl dom A = V A : V R V 𝒫 Base M M LMod x V x Base M
21 20 imp dom A = V A : V R V 𝒫 Base M M LMod x V x Base M
22 eqid Base M = Base M
23 eqid M = M
24 eqid 0 S = 0 S
25 eqid 0 M = 0 M
26 22 1 23 24 25 lmod0vs M LMod x Base M 0 S M x = 0 M
27 16 21 26 syl2anc dom A = V A : V R V 𝒫 Base M M LMod x V 0 S M x = 0 M
28 15 27 sylan9eqr dom A = V A : V R V 𝒫 Base M M LMod x V A x = 0 S A x M x = 0 M
29 28 ex dom A = V A : V R V 𝒫 Base M M LMod x V A x = 0 S A x M x = 0 M
30 29 necon3d dom A = V A : V R V 𝒫 Base M M LMod x V A x M x 0 M A x 0 S
31 14 30 sylbid dom A = V A : V R V 𝒫 Base M M LMod x V v V A v M v x 0 M A x 0 S
32 31 ss2rabdv dom A = V A : V R V 𝒫 Base M M LMod x V | v V A v M v x 0 M x V | A x 0 S
33 ovex A v M v V
34 eqid v V A v M v = v V A v M v
35 33 34 dmmpti dom v V A v M v = V
36 rabeq dom v V A v M v = V x dom v V A v M v | v V A v M v x 0 M = x V | v V A v M v x 0 M
37 35 36 mp1i dom A = V x dom v V A v M v | v V A v M v x 0 M = x V | v V A v M v x 0 M
38 rabeq dom A = V x dom A | A x 0 S = x V | A x 0 S
39 37 38 sseq12d dom A = V x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S x V | v V A v M v x 0 M x V | A x 0 S
40 39 adantr dom A = V A : V R x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S x V | v V A v M v x 0 M x V | A x 0 S
41 40 adantr dom A = V A : V R V 𝒫 Base M M LMod x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S x V | v V A v M v x 0 M x V | A x 0 S
42 32 41 mpbird dom A = V A : V R V 𝒫 Base M M LMod x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
43 42 exp43 dom A = V A : V R V 𝒫 Base M M LMod x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
44 4 43 mpcom A : V R V 𝒫 Base M M LMod x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
45 3 44 syl A R V V 𝒫 Base M M LMod x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
46 45 com13 M LMod V 𝒫 Base M A R V x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
47 46 3imp M LMod V 𝒫 Base M A R V x dom v V A v M v | v V A v M v x 0 M x dom A | A x 0 S
48 funmpt Fun v V A v M v
49 48 a1i M LMod V 𝒫 Base M A R V Fun v V A v M v
50 mptexg V 𝒫 Base M v V A v M v V
51 50 3ad2ant2 M LMod V 𝒫 Base M A R V v V A v M v V
52 fvexd M LMod V 𝒫 Base M A R V 0 M V
53 suppval1 Fun v V A v M v v V A v M v V 0 M V v V A v M v supp 0 M = x dom v V A v M v | v V A v M v x 0 M
54 49 51 52 53 syl3anc M LMod V 𝒫 Base M A R V v V A v M v supp 0 M = x dom v V A v M v | v V A v M v x 0 M
55 elmapfun A R V Fun A
56 55 3ad2ant3 M LMod V 𝒫 Base M A R V Fun A
57 simp3 M LMod V 𝒫 Base M A R V A R V
58 fvexd M LMod V 𝒫 Base M A R V 0 S V
59 suppval1 Fun A A R V 0 S V A supp 0 S = x dom A | A x 0 S
60 56 57 58 59 syl3anc M LMod V 𝒫 Base M A R V A supp 0 S = x dom A | A x 0 S
61 47 54 60 3sstr4d M LMod V 𝒫 Base M A R V v V A v M v supp 0 M A supp 0 S