Step |
Hyp |
Ref |
Expression |
1 |
|
scmsuppss.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
2 |
|
scmsuppss.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
3 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 : 𝑉 ⟶ 𝑅 ) |
4 |
|
fdm |
⊢ ( 𝐴 : 𝑉 ⟶ 𝑅 → dom 𝐴 = 𝑉 ) |
5 |
|
eqidd |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝐴 ‘ 𝑣 ) = ( 𝐴 ‘ 𝑥 ) ) |
7 |
|
id |
⊢ ( 𝑣 = 𝑥 → 𝑣 = 𝑥 ) |
8 |
6 7
|
oveq12d |
⊢ ( 𝑣 = 𝑥 → ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑣 = 𝑥 ) → ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
10 |
|
simpr |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
11 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ∈ V ) |
13 |
5 9 10 12
|
fvmptd |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
14 |
13
|
neeq1d |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) ↔ ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ≠ ( 0g ‘ 𝑀 ) ) ) |
15 |
|
oveq1 |
⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑆 ) → ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
16 |
|
simplrr |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
17 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
18 |
17
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
21 |
20
|
imp |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
26 |
22 1 23 24 25
|
lmod0vs |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
27 |
16 21 26
|
syl2anc |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
28 |
15 27
|
sylan9eqr |
⊢ ( ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
29 |
28
|
ex |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑆 ) → ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) ) |
30 |
29
|
necon3d |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝐴 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ≠ ( 0g ‘ 𝑀 ) → ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) ) ) |
31 |
14 30
|
sylbid |
⊢ ( ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) → ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) ) ) |
32 |
31
|
ss2rabdv |
⊢ ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) → { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
33 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ V |
34 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
35 |
33 34
|
dmmpti |
⊢ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = 𝑉 |
36 |
|
rabeq |
⊢ ( dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = 𝑉 → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } = { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ) |
37 |
35 36
|
mp1i |
⊢ ( dom 𝐴 = 𝑉 → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } = { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ) |
38 |
|
rabeq |
⊢ ( dom 𝐴 = 𝑉 → { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } = { 𝑥 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
39 |
37 38
|
sseq12d |
⊢ ( dom 𝐴 = 𝑉 → ( { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ↔ { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) |
40 |
39
|
adantr |
⊢ ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) → ( { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ↔ { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) |
41 |
40
|
adantr |
⊢ ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) → ( { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ↔ { 𝑥 ∈ 𝑉 ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) |
42 |
32 41
|
mpbird |
⊢ ( ( ( dom 𝐴 = 𝑉 ∧ 𝐴 : 𝑉 ⟶ 𝑅 ) ∧ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
43 |
42
|
exp43 |
⊢ ( dom 𝐴 = 𝑉 → ( 𝐴 : 𝑉 ⟶ 𝑅 → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑀 ∈ LMod → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) ) ) |
44 |
4 43
|
mpcom |
⊢ ( 𝐴 : 𝑉 ⟶ 𝑅 → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑀 ∈ LMod → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) ) |
45 |
3 44
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑀 ∈ LMod → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) ) |
46 |
45
|
com13 |
⊢ ( 𝑀 ∈ LMod → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) ) ) |
47 |
46
|
3imp |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
48 |
|
funmpt |
⊢ Fun ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
49 |
48
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → Fun ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
50 |
|
mptexg |
⊢ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∈ V ) |
51 |
50
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∈ V ) |
52 |
|
fvexd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 0g ‘ 𝑀 ) ∈ V ) |
53 |
|
suppval1 |
⊢ ( ( Fun ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∈ V ∧ ( 0g ‘ 𝑀 ) ∈ V ) → ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) supp ( 0g ‘ 𝑀 ) ) = { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ) |
54 |
49 51 52 53
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) supp ( 0g ‘ 𝑀 ) ) = { 𝑥 ∈ dom ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ∣ ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑀 ) } ) |
55 |
|
elmapfun |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → Fun 𝐴 ) |
56 |
55
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → Fun 𝐴 ) |
57 |
|
simp3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) |
58 |
|
fvexd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 0g ‘ 𝑆 ) ∈ V ) |
59 |
|
suppval1 |
⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) → ( 𝐴 supp ( 0g ‘ 𝑆 ) ) = { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
60 |
56 57 58 59
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝐴 supp ( 0g ‘ 𝑆 ) ) = { 𝑥 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑆 ) } ) |
61 |
47 54 60
|
3sstr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) supp ( 0g ‘ 𝑀 ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑆 ) ) ) |