Step |
Hyp |
Ref |
Expression |
1 |
|
scmsuppss.s |
|- S = ( Scalar ` M ) |
2 |
|
scmsuppss.r |
|- R = ( Base ` S ) |
3 |
|
elmapi |
|- ( A e. ( R ^m V ) -> A : V --> R ) |
4 |
|
fdm |
|- ( A : V --> R -> dom A = V ) |
5 |
|
eqidd |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) = ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ) |
6 |
|
fveq2 |
|- ( v = x -> ( A ` v ) = ( A ` x ) ) |
7 |
|
id |
|- ( v = x -> v = x ) |
8 |
6 7
|
oveq12d |
|- ( v = x -> ( ( A ` v ) ( .s ` M ) v ) = ( ( A ` x ) ( .s ` M ) x ) ) |
9 |
8
|
adantl |
|- ( ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) /\ v = x ) -> ( ( A ` v ) ( .s ` M ) v ) = ( ( A ` x ) ( .s ` M ) x ) ) |
10 |
|
simpr |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> x e. V ) |
11 |
|
ovex |
|- ( ( A ` x ) ( .s ` M ) x ) e. _V |
12 |
11
|
a1i |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( A ` x ) ( .s ` M ) x ) e. _V ) |
13 |
5 9 10 12
|
fvmptd |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) = ( ( A ` x ) ( .s ` M ) x ) ) |
14 |
13
|
neeq1d |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) <-> ( ( A ` x ) ( .s ` M ) x ) =/= ( 0g ` M ) ) ) |
15 |
|
oveq1 |
|- ( ( A ` x ) = ( 0g ` S ) -> ( ( A ` x ) ( .s ` M ) x ) = ( ( 0g ` S ) ( .s ` M ) x ) ) |
16 |
|
simplrr |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> M e. LMod ) |
17 |
|
elelpwi |
|- ( ( x e. V /\ V e. ~P ( Base ` M ) ) -> x e. ( Base ` M ) ) |
18 |
17
|
expcom |
|- ( V e. ~P ( Base ` M ) -> ( x e. V -> x e. ( Base ` M ) ) ) |
19 |
18
|
adantr |
|- ( ( V e. ~P ( Base ` M ) /\ M e. LMod ) -> ( x e. V -> x e. ( Base ` M ) ) ) |
20 |
19
|
adantl |
|- ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) -> ( x e. V -> x e. ( Base ` M ) ) ) |
21 |
20
|
imp |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> x e. ( Base ` M ) ) |
22 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
23 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
24 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
25 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
26 |
22 1 23 24 25
|
lmod0vs |
|- ( ( M e. LMod /\ x e. ( Base ` M ) ) -> ( ( 0g ` S ) ( .s ` M ) x ) = ( 0g ` M ) ) |
27 |
16 21 26
|
syl2anc |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( 0g ` S ) ( .s ` M ) x ) = ( 0g ` M ) ) |
28 |
15 27
|
sylan9eqr |
|- ( ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) /\ ( A ` x ) = ( 0g ` S ) ) -> ( ( A ` x ) ( .s ` M ) x ) = ( 0g ` M ) ) |
29 |
28
|
ex |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( A ` x ) = ( 0g ` S ) -> ( ( A ` x ) ( .s ` M ) x ) = ( 0g ` M ) ) ) |
30 |
29
|
necon3d |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( ( A ` x ) ( .s ` M ) x ) =/= ( 0g ` M ) -> ( A ` x ) =/= ( 0g ` S ) ) ) |
31 |
14 30
|
sylbid |
|- ( ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) /\ x e. V ) -> ( ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) -> ( A ` x ) =/= ( 0g ` S ) ) ) |
32 |
31
|
ss2rabdv |
|- ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) -> { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. V | ( A ` x ) =/= ( 0g ` S ) } ) |
33 |
|
ovex |
|- ( ( A ` v ) ( .s ` M ) v ) e. _V |
34 |
|
eqid |
|- ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) = ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) |
35 |
33 34
|
dmmpti |
|- dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) = V |
36 |
|
rabeq |
|- ( dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) = V -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } = { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } ) |
37 |
35 36
|
mp1i |
|- ( dom A = V -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } = { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } ) |
38 |
|
rabeq |
|- ( dom A = V -> { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } = { x e. V | ( A ` x ) =/= ( 0g ` S ) } ) |
39 |
37 38
|
sseq12d |
|- ( dom A = V -> ( { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } <-> { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. V | ( A ` x ) =/= ( 0g ` S ) } ) ) |
40 |
39
|
adantr |
|- ( ( dom A = V /\ A : V --> R ) -> ( { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } <-> { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. V | ( A ` x ) =/= ( 0g ` S ) } ) ) |
41 |
40
|
adantr |
|- ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) -> ( { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } <-> { x e. V | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. V | ( A ` x ) =/= ( 0g ` S ) } ) ) |
42 |
32 41
|
mpbird |
|- ( ( ( dom A = V /\ A : V --> R ) /\ ( V e. ~P ( Base ` M ) /\ M e. LMod ) ) -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) |
43 |
42
|
exp43 |
|- ( dom A = V -> ( A : V --> R -> ( V e. ~P ( Base ` M ) -> ( M e. LMod -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) ) ) ) |
44 |
4 43
|
mpcom |
|- ( A : V --> R -> ( V e. ~P ( Base ` M ) -> ( M e. LMod -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) ) ) |
45 |
3 44
|
syl |
|- ( A e. ( R ^m V ) -> ( V e. ~P ( Base ` M ) -> ( M e. LMod -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) ) ) |
46 |
45
|
com13 |
|- ( M e. LMod -> ( V e. ~P ( Base ` M ) -> ( A e. ( R ^m V ) -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) ) ) |
47 |
46
|
3imp |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } C_ { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) |
48 |
|
funmpt |
|- Fun ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) |
49 |
48
|
a1i |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> Fun ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ) |
50 |
|
mptexg |
|- ( V e. ~P ( Base ` M ) -> ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) e. _V ) |
51 |
50
|
3ad2ant2 |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) e. _V ) |
52 |
|
fvexd |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( 0g ` M ) e. _V ) |
53 |
|
suppval1 |
|- ( ( Fun ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) /\ ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) e. _V /\ ( 0g ` M ) e. _V ) -> ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) supp ( 0g ` M ) ) = { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } ) |
54 |
49 51 52 53
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) supp ( 0g ` M ) ) = { x e. dom ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) | ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) ` x ) =/= ( 0g ` M ) } ) |
55 |
|
elmapfun |
|- ( A e. ( R ^m V ) -> Fun A ) |
56 |
55
|
3ad2ant3 |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> Fun A ) |
57 |
|
simp3 |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> A e. ( R ^m V ) ) |
58 |
|
fvexd |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( 0g ` S ) e. _V ) |
59 |
|
suppval1 |
|- ( ( Fun A /\ A e. ( R ^m V ) /\ ( 0g ` S ) e. _V ) -> ( A supp ( 0g ` S ) ) = { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) |
60 |
56 57 58 59
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( A supp ( 0g ` S ) ) = { x e. dom A | ( A ` x ) =/= ( 0g ` S ) } ) |
61 |
47 54 60
|
3sstr4d |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) /\ A e. ( R ^m V ) ) -> ( ( v e. V |-> ( ( A ` v ) ( .s ` M ) v ) ) supp ( 0g ` M ) ) C_ ( A supp ( 0g ` S ) ) ) |