Metamath Proof Explorer


Theorem lcoval

Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b B=BaseM
lcoop.s S=ScalarM
lcoop.r R=BaseS
Assertion lcoval MXV𝒫BCMLinCoVCBsRVfinSupp0SsC=slinCMV

Proof

Step Hyp Ref Expression
1 lcoop.b B=BaseM
2 lcoop.s S=ScalarM
3 lcoop.r R=BaseS
4 1 2 3 lcoop MXV𝒫BMLinCoV=cB|sRVfinSupp0Ssc=slinCMV
5 4 eleq2d MXV𝒫BCMLinCoVCcB|sRVfinSupp0Ssc=slinCMV
6 eqeq1 c=Cc=slinCMVC=slinCMV
7 6 anbi2d c=CfinSupp0Ssc=slinCMVfinSupp0SsC=slinCMV
8 7 rexbidv c=CsRVfinSupp0Ssc=slinCMVsRVfinSupp0SsC=slinCMV
9 8 elrab CcB|sRVfinSupp0Ssc=slinCMVCBsRVfinSupp0SsC=slinCMV
10 5 9 bitrdi MXV𝒫BCMLinCoVCBsRVfinSupp0SsC=slinCMV