Metamath Proof Explorer


Theorem lcoval

Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b B = Base M
lcoop.s S = Scalar M
lcoop.r R = Base S
Assertion lcoval M X V 𝒫 B C M LinCo V C B s R V finSupp 0 S s C = s linC M V

Proof

Step Hyp Ref Expression
1 lcoop.b B = Base M
2 lcoop.s S = Scalar M
3 lcoop.r R = Base S
4 1 2 3 lcoop M X V 𝒫 B M LinCo V = c B | s R V finSupp 0 S s c = s linC M V
5 4 eleq2d M X V 𝒫 B C M LinCo V C c B | s R V finSupp 0 S s c = s linC M V
6 eqeq1 c = C c = s linC M V C = s linC M V
7 6 anbi2d c = C finSupp 0 S s c = s linC M V finSupp 0 S s C = s linC M V
8 7 rexbidv c = C s R V finSupp 0 S s c = s linC M V s R V finSupp 0 S s C = s linC M V
9 8 elrab C c B | s R V finSupp 0 S s c = s linC M V C B s R V finSupp 0 S s C = s linC M V
10 5 9 bitrdi M X V 𝒫 B C M LinCo V C B s R V finSupp 0 S s C = s linC M V