Metamath Proof Explorer


Definition df-lco

Description: Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion df-lco LinCo=mV,v𝒫BasemcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinco classLinCo
1 vm setvarm
2 cvv classV
3 vv setvarv
4 cbs classBase
5 1 cv setvarm
6 5 4 cfv classBasem
7 6 cpw class𝒫Basem
8 vc setvarc
9 vs setvars
10 csca classScalar
11 5 10 cfv classScalarm
12 11 4 cfv classBaseScalarm
13 cmap class𝑚
14 3 cv setvarv
15 12 14 13 co classBaseScalarmv
16 9 cv setvars
17 cfsupp classfinSupp
18 c0g class0𝑔
19 11 18 cfv class0Scalarm
20 16 19 17 wbr wfffinSupp0Scalarms
21 8 cv setvarc
22 clinc classlinC
23 5 22 cfv classlinCm
24 16 14 23 co classslinCmv
25 21 24 wceq wffc=slinCmv
26 20 25 wa wfffinSupp0Scalarmsc=slinCmv
27 26 9 15 wrex wffsBaseScalarmvfinSupp0Scalarmsc=slinCmv
28 27 8 6 crab classcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv
29 1 3 2 7 28 cmpo classmV,v𝒫BasemcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv
30 0 29 wceq wffLinCo=mV,v𝒫BasemcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv