| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clinco |
⊢ LinCo |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vv |
⊢ 𝑣 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑚 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
| 8 |
|
vc |
⊢ 𝑐 |
| 9 |
|
vs |
⊢ 𝑠 |
| 10 |
|
csca |
⊢ Scalar |
| 11 |
5 10
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
| 12 |
11 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
| 13 |
|
cmap |
⊢ ↑m |
| 14 |
3
|
cv |
⊢ 𝑣 |
| 15 |
12 14 13
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) |
| 16 |
9
|
cv |
⊢ 𝑠 |
| 17 |
|
cfsupp |
⊢ finSupp |
| 18 |
|
c0g |
⊢ 0g |
| 19 |
11 18
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 20 |
16 19 17
|
wbr |
⊢ 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 21 |
8
|
cv |
⊢ 𝑐 |
| 22 |
|
clinc |
⊢ linC |
| 23 |
5 22
|
cfv |
⊢ ( linC ‘ 𝑚 ) |
| 24 |
16 14 23
|
co |
⊢ ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) |
| 25 |
21 24
|
wceq |
⊢ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) |
| 26 |
20 25
|
wa |
⊢ ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) |
| 27 |
26 9 15
|
wrex |
⊢ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) |
| 28 |
27 8 6
|
crab |
⊢ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } |
| 29 |
1 3 2 7 28
|
cmpo |
⊢ ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } ) |
| 30 |
0 29
|
wceq |
⊢ LinCo = ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } ) |