Step |
Hyp |
Ref |
Expression |
0 |
|
clinco |
⊢ LinCo |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cvv |
⊢ V |
3 |
|
vv |
⊢ 𝑣 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑚 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
8 |
|
vc |
⊢ 𝑐 |
9 |
|
vs |
⊢ 𝑠 |
10 |
|
csca |
⊢ Scalar |
11 |
5 10
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
12 |
11 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
13 |
|
cmap |
⊢ ↑m |
14 |
3
|
cv |
⊢ 𝑣 |
15 |
12 14 13
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) |
16 |
9
|
cv |
⊢ 𝑠 |
17 |
|
cfsupp |
⊢ finSupp |
18 |
|
c0g |
⊢ 0g |
19 |
11 18
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
20 |
16 19 17
|
wbr |
⊢ 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
21 |
8
|
cv |
⊢ 𝑐 |
22 |
|
clinc |
⊢ linC |
23 |
5 22
|
cfv |
⊢ ( linC ‘ 𝑚 ) |
24 |
16 14 23
|
co |
⊢ ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) |
25 |
21 24
|
wceq |
⊢ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) |
26 |
20 25
|
wa |
⊢ ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) |
27 |
26 9 15
|
wrex |
⊢ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) |
28 |
27 8 6
|
crab |
⊢ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } |
29 |
1 3 2 7 28
|
cmpo |
⊢ ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } ) |
30 |
0 29
|
wceq |
⊢ LinCo = ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } ) |