Metamath Proof Explorer


Definition df-lco

Description: Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion df-lco LinCo = ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinco LinCo
1 vm 𝑚
2 cvv V
3 vv 𝑣
4 cbs Base
5 1 cv 𝑚
6 5 4 cfv ( Base ‘ 𝑚 )
7 6 cpw 𝒫 ( Base ‘ 𝑚 )
8 vc 𝑐
9 vs 𝑠
10 csca Scalar
11 5 10 cfv ( Scalar ‘ 𝑚 )
12 11 4 cfv ( Base ‘ ( Scalar ‘ 𝑚 ) )
13 cmap m
14 3 cv 𝑣
15 12 14 13 co ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 )
16 9 cv 𝑠
17 cfsupp finSupp
18 c0g 0g
19 11 18 cfv ( 0g ‘ ( Scalar ‘ 𝑚 ) )
20 16 19 17 wbr 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) )
21 8 cv 𝑐
22 clinc linC
23 5 22 cfv ( linC ‘ 𝑚 )
24 16 14 23 co ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 )
25 21 24 wceq 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 )
26 20 25 wa ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) )
27 26 9 15 wrex 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) )
28 27 8 6 crab { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) }
29 1 3 2 7 28 cmpo ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } )
30 0 29 wceq LinCo = ( 𝑚 ∈ V , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑐 ∈ ( Base ‘ 𝑚 ) ∣ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ 𝑐 = ( 𝑠 ( linC ‘ 𝑚 ) 𝑣 ) ) } )