| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clinco |
|- LinCo |
| 1 |
|
vm |
|- m |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vv |
|- v |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- m |
| 6 |
5 4
|
cfv |
|- ( Base ` m ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` m ) |
| 8 |
|
vc |
|- c |
| 9 |
|
vs |
|- s |
| 10 |
|
csca |
|- Scalar |
| 11 |
5 10
|
cfv |
|- ( Scalar ` m ) |
| 12 |
11 4
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
| 13 |
|
cmap |
|- ^m |
| 14 |
3
|
cv |
|- v |
| 15 |
12 14 13
|
co |
|- ( ( Base ` ( Scalar ` m ) ) ^m v ) |
| 16 |
9
|
cv |
|- s |
| 17 |
|
cfsupp |
|- finSupp |
| 18 |
|
c0g |
|- 0g |
| 19 |
11 18
|
cfv |
|- ( 0g ` ( Scalar ` m ) ) |
| 20 |
16 19 17
|
wbr |
|- s finSupp ( 0g ` ( Scalar ` m ) ) |
| 21 |
8
|
cv |
|- c |
| 22 |
|
clinc |
|- linC |
| 23 |
5 22
|
cfv |
|- ( linC ` m ) |
| 24 |
16 14 23
|
co |
|- ( s ( linC ` m ) v ) |
| 25 |
21 24
|
wceq |
|- c = ( s ( linC ` m ) v ) |
| 26 |
20 25
|
wa |
|- ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) |
| 27 |
26 9 15
|
wrex |
|- E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) |
| 28 |
27 8 6
|
crab |
|- { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } |
| 29 |
1 3 2 7 28
|
cmpo |
|- ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } ) |
| 30 |
0 29
|
wceq |
|- LinCo = ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } ) |