Metamath Proof Explorer


Definition df-lco

Description: Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion df-lco
|- LinCo = ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinco
 |-  LinCo
1 vm
 |-  m
2 cvv
 |-  _V
3 vv
 |-  v
4 cbs
 |-  Base
5 1 cv
 |-  m
6 5 4 cfv
 |-  ( Base ` m )
7 6 cpw
 |-  ~P ( Base ` m )
8 vc
 |-  c
9 vs
 |-  s
10 csca
 |-  Scalar
11 5 10 cfv
 |-  ( Scalar ` m )
12 11 4 cfv
 |-  ( Base ` ( Scalar ` m ) )
13 cmap
 |-  ^m
14 3 cv
 |-  v
15 12 14 13 co
 |-  ( ( Base ` ( Scalar ` m ) ) ^m v )
16 9 cv
 |-  s
17 cfsupp
 |-  finSupp
18 c0g
 |-  0g
19 11 18 cfv
 |-  ( 0g ` ( Scalar ` m ) )
20 16 19 17 wbr
 |-  s finSupp ( 0g ` ( Scalar ` m ) )
21 8 cv
 |-  c
22 clinc
 |-  linC
23 5 22 cfv
 |-  ( linC ` m )
24 16 14 23 co
 |-  ( s ( linC ` m ) v )
25 21 24 wceq
 |-  c = ( s ( linC ` m ) v )
26 20 25 wa
 |-  ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) )
27 26 9 15 wrex
 |-  E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) )
28 27 8 6 crab
 |-  { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) }
29 1 3 2 7 28 cmpo
 |-  ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } )
30 0 29 wceq
 |-  LinCo = ( m e. _V , v e. ~P ( Base ` m ) |-> { c e. ( Base ` m ) | E. s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) ( s finSupp ( 0g ` ( Scalar ` m ) ) /\ c = ( s ( linC ` m ) v ) ) } )